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Abstract 

This study presented for the first time the use of intact sediment cores in a continuous 

sediment-oil-flow-through (SOFT) system for investigating the degradation of petroleum 

under a simulated petroleum seepage. It suggests that the use of the SOFT system, which is 

designed to maintain the natural fabric and heterogeneity of the marine sediments, 

provides a more comprehensive understanding of the in situ processes involved in 

petroleum degradation at marine seeps compared to the traditional use of sediment 

slurries. The SOFT system enabled quasi in situ monitoring of ongoing biogeochemical 

changes taking place in sediments during petroleum seepage and to the best of our 

knowledge, showed microbial methanogenic degradation of hydrocarbons in an almost 

natural setting.  

The biogeochemical response of sediments from hydrocarbon adapted sites like the 

Caspian Sea, North Alex Mud Volcano in the Eastern Mediterranean, the Santa Barbara  

Channel and non-adapted site like the Eckernfoerde Bay in the Baltic Sea to petroleum 

seepage was investigated and compared using the SOFT system. Distinct redox zonation 

was established in the sediment cores that evolved temporally and spatially during the 

upward migration of petroleum. Sulfate reduction and methanogenesis were identified as 

two major processes involved in the degradation of petroleum at seeps. The concentrations 

of n-alkanes decreased successively towards the sediment surface. Methanogenesis was 

identified to be involved in degradation of mid- to long-chain alkanes whereas sulfate 

reduction was identified to be the more dominant process involved in both short and mid - 

to long chain alkane degradation. The microbial diversity decreased in sediments after the 

onset of petroleum seepage indicating that only few specialized microbes are involved in 

the degradation of petroleum under in situ conditions. Short-chain volatile alkanes like 

ethane, propane, isobutane, n-butane, pentane and hexane were almost completely 

depleted in the sulfate reducing zone. Clade SCA1 and clade LCA2 were identified as two 

key sulfate reducing bacteria in the Caspian Sea sediments responsible for short-chain 

alkane degradation and for mid- to long-chain alkane degradation, respectively, whereas 
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syntrophic archaea of the genus Methanosarcina was identified to be involved in the 

methanogenic degradation of long- chain alkanes.  

Among all sites, the fastest response to petroleum addition was seen in the North Alex Mud 

Volcano sediments followed by sediments from the Caspian Sea, the Santa Barbara Channel 

and the Eckernfoerde Bay suggesting that microbial communities in sediments with prior 

adaptation to hydrocarbon seepage are more efficient in degrading hydrocarbons 

compared to microbial communities from non-adapted sediments.  

 

Zusammenfassung 

Diese Studie zeigt die erstmalige Anwendung intakter Sedimentkerne in einem 

kontinuierlichen Sediment-Öl-Durchflusssystem (SOFT-System), welches den Abbau von 

Erdöl unter einem simulierten Erdölaustritt untersuchte. Das SOFT-System, welches 

entwickelt wurde um die natürliche Struktur und Heterogenität des marinen Sediments 

aufrechtzuerhalten, ermöglichte ein umfassenderes Verständnis der in situ Prozesse 

während des Erdölabbaus an den marinen Quellen, als die traditionell genutzten Sediment-

Slurries (Sedimentgemische). Das SOFT System ermöglichte quasi in situ Untersuchungen 

der biogeochemischen Veränderungen, welche im Sediment während des Ölabbaus 

stattfanden. Des Weiteren wurde, nach bestem Wissen, der mikrobielle methanogene 

Abbau des Erdöls in einer beinahe natürlichen Umgebung gezeigt. 

Die biogeochemische Reaktion der Sedimente in an Kohlenwasserstoffe angepasste 

Gebieten wie dem Kaspischen Meer, dem North Alex Schlammvulkan im östlichen 

Mittelmeer und dem Santa Barbara Kanal, wurden mit einem Gebiet das nicht an einen 

Erdölausritt angepasst war, der Eckernfoerder Bucht in der Ostsee, unter Verwendung des 

SOFT Systems untersucht und verglichen. Es wurde eine ausgeprägte Redox -Zonierung in 

den Sedimentkernen festgestellt, welche sich mit dem aufsteigenden Erdöl zeitlich und 

räumlich bildete. Als die zwei, am Erdölabbau beteiligen Hauptprozesse, wurden 

Sulfatreduktion und Methanogenese identifiziert. Die Konzentration der n-Alkane 

verringerte sich sukzessiv in Richtung der Sedimentoberfläche. Die Methanogenese wurde 
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als beteiligter Prozess beim Abbau der mittel- und langkettigen Alkene erkannt, während 

Sulfatreduktion als dominanter Prozess in beides involviert war, den Abbau der kur z-, 

sowie der mittel- und langkettigen Alkane. Die mikrobielle Diversität verringerte sich nach 

Beginn des Erdölaustritts im Sediment, was darauf hinweist, dass nur einige wenige 

spezialisierte Bakterien in den Erdölabbau unter in situ Bedingungen involvie rt waren. 

Kurzkettige, flüchtige Alkane wie Ethan, Propan, Isobutan, n-Butan, Pentan und Hexan 

wurden beinahe vollständig in der Sulfatreduktionszone aufgebraucht. Die 

monophyletische Gruppe SCA1 wurde als eine der zwei Hauptsulfatreduzierer im Sediment 

des Kaspischen Meers identifiziert und war für den Abbau der kurzkettigen Alkane 

verantwortlich, während die monophyletische Gruppe LCA2 als zweiter 

Hauptsulfatreduzierer für den Abbau der mittel- und langkettigen Alkane identifiziert 

wurde. Wohingegen syntrophische Archaea der Gattung Methanosarcina für den 

methanogenen Abbau der langkettigen Alkane identifiziert wurden.  

Alle Beprobungsstandorte betrachtend, zeigte die schnellste Reaktion auf die Zugabe von 

Erdöl das Sediment des North Alex Schlammvulkans, gefolgt vom Sediment des Kaspischen 

Meeres, dem Santa Barbara Kanal und der Eckernfoerder Bucht, was darauf schließen lässt, 

dass mikrobielle Gemeinschaften in Sedimenten, die schon vorher an einen Erdölaustritt 

angepasst waren, effizienter Erdöl abbauen, als mikrobielle Gemeinschaften in nicht an 

Erdöl angepassten Sedimenten.    
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1. Introduction 

1.1 Petroleum: Formation and Composition 

When buried organic matter in sedimentary basins is exposed to high temperatures and 

pressures over long periods of geological time, it undergoes structural rearrangement to 

form petroleum (Tissot & Welte, 1984; Bjorlykke, 2010). Petroleum is a complex mixture of 

hydrocarbons. Hydrocarbons are organic compounds made up of the two elements, carbon 

and hydrogen. Hydrocarbons can be formed by thermal degradation of buried organic 

matter (Tissot & Welte, 1984) or as metabolites of microbial, floral, or faunal activities 

(Widdel & Rabus, 2001; Widdel et al., 2006). Thus, the two elements carbon and hydrogen 

alone form more than 97% of the entire petroleum composition with some minor elements 

like oxygen, sulfur and nitrogen forming the rest (Hunt, 1995). 

In nature, petroleum exists in both gaseous and liquid state and the main forms of 

petroleum are natural gas, condensate and crude oil (Hunt, 1995). The wide range of 

compounds that comprise petroleum are broadly categorized into four main groups , 

namely i) saturates or paraffins ii) aromatics iii) resins iv) asphaltenes (Tissot & Welte, 

1984; Fig. 1). Saturates consist of normal and branched alkanes and cycloalkanes 

(naphthenes) that are hydrocarbons with single bonds between the carbon atoms. 

Cycloalkanes are the most common saturates and can make up to almost 50% of the 

average crude oil, and the normal alkanes (n-alkanes) are the next major constituents and 

can form around 15 to 20% of the total petroleum. Aromatics consist of hydrocarbons that 

contain at least one (monoaromatic) or more (polyaromatic) benzene rings.  Resins and 

asphaltenes are high molecular weight polar, polycyclic compounds containing N, S and O 

atoms and comprise about half of the total nitrogen and sulfur found in petroleum. Resins 

are highly polar and more soluble than asphaltenes (Tissot & Welte, 1984; Hunt, 1995; 

Harayama et al., 1999). The relative contribution of the four groups vary in different kinds 

of petroleum. For example, in light crude oil, saturates comprise 55 to 90%, aromatics 

comprise 10 to 35% and resins and asphaltenes form 0 to 10% of the total petroleum. 
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Whereas in heavier crude oils, the percentage of aromatics, and the polar fraction (resins 

and asphaltenes) increases to about 15 to 40% and 10 to 40%, respectively (Fingas, 2010).  

 

 

Figure 1. Some representative hydrocarbons of petroleum belonging to the different groups, 
namely saturates, aromatics, resins, and asphaltenes. Source: modified from (Laufer, 2012)  

 

1.2 Sources of petroleum in the ocean 

Petroleum enters the earth’s ocean through natural and anthropogenic sources. In 2003, a 

report from the National Academy of Sciences, USA, summarized the state of the art 

knowledge on the input of petroleum into the marine environment (National Research 

Council, 2003). With an annual worldwide input of more than 1.3 million tonnes of 

petroleum per year, the sources of petroleum in the ocean were categorized into four main 

groups, namely i) natural seepage of petroleum, ii) petroleum extraction or production, iii) 

petroleum transportation, and iv) petroleum consumption (Fig. 2). Due to the increasing 

energy demand in the world, there is an increase in the production and consumption of 

petroleum. Almost 40% of the produced petroleum is transported via water (Prince et al., 

2003), either through pipelines or with vessels. Hence, occasional release of petroleum 
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during the transport along with the accidental spills during extraction process are some of 

the forms of petroleum contamination by human activity in the marine environment. 

Petroleum consumption mostly takes place on land in industrialized and rapidly 

industrializing areas. Therefore, most of the petroleum contamination by human activity is 

passed onto the oceans from land via rivers and waste water streams, along with the 

pollution that arises from private boats and non-tank vessels. Although about 53% of 

petroleum enters the ocean through anthropogenic sources, natural seeps alone account 

for the rest half of the petroleum input into the ocean. The natural seepage of petroleum 

into the ocean is discussed in the following section in detail.  

 

 

Figure 2. Relative contribution of the individual sources of petroleum in the marine environment. 
Source: (Prince et al., 2003) 

 

1.3 Natural seepage of petroleum 

After petroleum is generated in subsurface sediments, it undergoes primary and secondary 

migration until it ends up in reservoirs, from where it may occasionally seep out to the 

surface. 
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Petroleum generation: 

During the early diagenesis of buried organic matter, complex organic compounds break 

down to simpler compounds like amino acids and carbohydrates. These smaller 

compounds then combine to form larger complex compounds that are collectively called 

kerogen that is insoluble in organic solvents. Hence, kerogen is defined as the insoluble 

part of buried organic matter and is the precursor of petroleum. At sediment depths of 3 to 

4 km, where the temperature is sufficiently high (100°C to 150°), kerogen is converted to 

petroleum over long geological time periods (Bjorlykke, 2010).  

Petroleum migration: 

When kerogen matures, oil and gas are expelled from the source bed to adjacent rocks. This 

release of petroleum from kerogen through the narrow capillaries and pores of the fine 

grained source bed is called the primary migration (Tissot & Welte, 1984). Once released 

from the source rock, petroleum flows through more permeable carrier and reservoir rocks 

before accumulating as oil and gas pools in traps. This represents the secondary migration 

of petroleum. Secondary migration of petroleum consists of a multiphase flow (oil, gas and 

water) and is governed by two main forces, buoyancy and capillary pressure. As the density 

of oil (0.7 to 1 g cm-3) is lower than that of water (1 to 1.2 g cm-3), the main driver for oil 

movement through the sediments is buoyancy. However, the buoyancy force must be 

strong enough to overcome the capillary resistance of the small pore throats in the 

sediment. During a two phase flow of oil and water in a water saturated system, oil 

droplets will be held back by the capillary forces due to their low relative permeability 

whereas the water will flow past them through the pores. Hence, oil saturated pathways 

are required for the secondary migration of petroleum (Bjorlykke, 2010). During secondary 

migration, petroleum can cover ten to hundreds of kilometers (Tissot & Welte, 1984). 

Ultimately, petroleum accumulates as oil and gas pools in traps which may sometimes 

cause the hydrocarbons to seep out at the surface. 
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Petroleum seeps: 

Petroleum seeps to the surface, where there is a permeable pathway present directly from 

the source strata up to the surface or when there is a leakage in the hydrocarbon 

accumulations of the oil reservoirs (Hunt, 1995). Seeps are mostly found along continental 

margins and in sedimentary rocks that have been folded, faulted and eroded. Areas where 

petroleum visibly leaks out at the surface of marine sediments with high concentrations of 

low and high molecular weight hydrocarbons are called active macroseeps, and areas 

where there is no visible hydrocarbon seepage but only invisible seepage of gaseous 

hydrocarbons are called microseeps (Meer et al., 2002). Petroleum seeping out of these 

seeps can end up forming oil slicks in the surface waters that can spread up to tens of 

kilometers (Leifer et al., 2006) and releasing greenhouse gases like methane into the 

atmosphere (Solomon et al., 2009). Although natural seeps have been releasing crude oil 

and have thereby been impacting the marine environment since prehistoric times, the 

attention on their environmental impact has developed only recently after some of the 

large scale anthropogenic oil spills occurred in the 1960s (Fingas, 2010). It is estimated 

that around 600,000 tonnes of petroleum enters the earth’s ocean via natural seeps each 

year, which  forms almost of half of the total input of petroleum into the ocean per year 

(National Research Council, 2003; Kvenvolden & Cooper, 2003). The number of regions 

detected to have seeps have increased over the last years due to improved technology 

(Kvenvolden & Cooper, 2003, Fig. 3).  Some of the world’s most intense natural seeps of 

petroleum are found in the Santa Barbara Channel (Hornafius et al., 1999), the Gulf of 

Mexico (MacDonald, 1993) and the Caspian Sea (Guliev & Feizullayev, 1996; Guliyev et al., 

2003).  
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Figure 3. Known locations of naturally occurring crude oil seeps in the marine environment.  The 
numbers allotted to the black dots represent the number of seeps in that region. Source: 
(Kvenvolden & Cooper, 2003) 
 

1.4 Fate of petroleum in the marine environment 

Despite the huge amounts of petroleum that enters the earth’s ocean each year, the ocean is 

still not flooded with oil. This is due to the fact that petroleum is subjected to a series of 

physical, chemical and biological processes collectively called as “weathering” that breaks 

down the petroleum composition (National Research Council, 2003; Fingas, 2010). The 

different weathering processes are emulsification, evaporation, dissolution, natural 

dispersion, photo-oxidation and microbial degradation (Fingas, 2010). Microbial 

degradation, however, is considered to be the major and the ultimate process of 

hydrocarbon degradation (Das & Chandran, 2010 and references therein). Microbial 

degradation can completely convert petroleum hydrocarbons to CO2 and H20, and is 

considered to be the principal hydrocarbon removal processes in the aquatic environment 

(National Research Council, 2003). It is stated that without the microbial degradation of 

petroleum, there would be a thin layer of oil (20 molecules thick) covering the entire 
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surface of the earth’s ocean today (Head et al., 2006). Hence, focus of the thesis will be on 

microbial degradation (biodegradation) of petroleum.  

 

1.4.1 Biodegradation of petroleum  

Microorganisms in the environment can utilize hydrocarbons as the sole or major source of 

carbon and energy and in the process mineralize them to CO2 and H20 (Röling et al., 2002 

and references therein). Microbial oxidation of hydrocarbons can take place in both the 

presence and absence of oxygen and in all cases, a part of the hydrocarbon is stored as cell 

mass and a part of it is conserved as energy (Widdel & Rabus, 2001). Biodegradation of 

petroleum in the environment is primarily done by bacteria and fungi. However, in the 

marine environment, bacteria are the predominant hydrocarbon degraders (Leahy & 

Colwell, 1990). The rate of microbial degradation of hydrocarbons in the ocean depends on 

several environmental factors like the availability of nutrients and terminal electron 

acceptors, composition and concentration of petroleum, temperature, salinity and pressure 

(Leahy & Colwell, 1990). For example, the polar fraction (resins and asphaltenes) are 

highly resistant to biodegradation, compared to the saturated and aromatic fractions.  

Within the saturated fraction, n-alkanes are more susceptible to biodegradation compared 

to branched alkanes. Aerobic degradation of hydrocarbons has been well known and 

documented for a long time (Head et al., 2006 and references therein). In the aerobic 

oxidation of hydrocarbons, oxygen is used both as a terminal electron acceptor as well as 

for the initial substrate activation (Fig. 4). However, anaerobic degradation of 

hydrocarbons was not recognized for a long time due to its low reactivity (Widdel et al., 

2010). Nevertheless, since the last two decades, several compounds are known to be 

oxidized under anaerobic conditions. Today it is known that anaerobic hydrocarbon 

degraders can oxidize hydrocarbons by using nitrate, iron(III), or sulfate as electron 

acceptors and also under methanogenic conditions (Widdel et al., 2010). 
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Figure 4. Different pathways of aerobic and anaerobic oxidation of hydrocarbons by 
microorganisms. Source: (Widdel & Rabus, 2001) 

 

1.5 Biodegradation of petroleum in marine sediments 

1.5.1 Organic matter degradation in marine sediments 

Different redox processes are involved in the biodegradation of organic matter in marine 

sediments. Bacteria use oxidants (electron acceptors) to oxidize the reduced organic 

matter. The microbial degradation of organic matter in marine sediments is characterized 

by a vertical (depth dependent) sequence of oxidants (Jorgensen, 2006). The vertical 

sequence of the oxidants and the corresponding redox processes are based on the 

decreasing redox potential and energy yield of the respective metabolic processes (Fig. 5).  

For example, oxygen is thermodynamically the most favored electron acceptor because it 

has the highest free energy yield (Δ°G = -479 kJ mol-1) whereas, the energy yield of sulfate 

reduction is only a fraction of its free energy yield (Δ°G = -77 kJ mol-1).  Microbial 

degradation of petroleum in marine sediments is also controlled by the natural redox 
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ladder of marine sediments and petroleum can be degraded under both aerobic and 

anaerobic conditions. However, as  most of the oxygen is consumed in the upper 

millimeters to centimeters or decimeters of the sediment (Jorgensen, 2006 and references 

therein), petroleum degradation in the marine sediments would take place mainly under 

anaerobic conditions. Therefore, we will focus on the anaerobic degradation of petroleum 

in marine sediments in the following section. 

 

1.5.2 Anaerobic degradation of petroleum in marine seep sediments 

Most of the world’s petroleum reserve is partly biodegraded due to the microbial alteration 

of hydrocarbons in subsurface reservoirs (Röling et al., 2003).  In contrast to marine spills, 

where petroleum first reaches the marine sediment surface from above after undergoing 

powerful aerobic biodegradation in the oxygenated water column (Head et al., 2006), in a 

petroleum seep it first reaches the sediment surface from the energetically lower end of the 

redox cascade after moving through the anoxic and reduced subsurface regions (Fig. 5). 

Therefore, anaerobic degradation is the most important process in degradation of 

petroleum in marine sediments. In the absence of oxygen, petroleum hydrocarbons can be 

mediated by use of other electron acceptors through process like denitrification, iron(III) 

reduction, sulfate reduction and methanogenesis (Harayama et al., 1999 and references 

therein). While aerobic degradation of petroleum hydrocarbons has been well known for a 

long time already, the recognition of anaerobic degradation of hydrocarbons has started 

only recently since the late 1980s (Heider et al., 1998; Widdel & Rabus, 2001; Widdel et al., 

2010). Due to the observation of sulfide formation in anoxic oil fields (Bastin et al., 1926) 

there were speculations and investigations on anaerobic degradation of hydrocarbons for a 

long time. Yet, no reproducible laboratory experiment could show anaerobic degradation of 

hydrocarbons until the 1980s (Aeckersberg et al., 1991; Widdel et al., 2006 and references 

therein). Today, anaerobic degradation of several alkanes, alkenes, alkynes, aromatics have 

been reported through isolation-culture experiments (Widdel et al., 2006 and references 

therein). Despite the increasing number of studies on anaerobic degradation, there is still a 

lack of knowledge on the anaerobic hydrocarbon degraders at the ecosystem and 
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molecular level (Widdel et al., 2010). As saturated alkanes form the major part of the 

petroleum (see section 1.1), the following section will mostly focus on the anaerobic 

degradation of alkanes. 

 

Anaerobic degradation of Alkanes:  

The first report of an isolate that could degrade an alkane (n-hexadecane) was reported in 

1991 by (Aeckersberg et al., 1991) under sulfate reducing conditions. Until recently, most 

of the isolates that have been shown to have degraded hydrocarbons anaerobically had 

used only n-alkanes > C6, i.e. alkanes with six or more carbon atoms (Heider et al., 1998; 

Wentzel et al., 2007 and references therein). Among the short chain alkanes (<C6), 

considerable focus  has been given on the investigation of anaerobic oxidation of methane 

since it is a potential greenhouse gas (Bose et al., 2013). Anaerobic oxidation of methane is 

the microbial process where methane is oxidized by a consortium of methanogenic archaea 

and sulfate reducing bacteria with sulfate as the terminal electron acceptor (Treude, 2003 

and references therein). The first evidence of anaerobic methane oxidation in organic rich 

marine sediments came in 1974 by (Martens & Berner, 1974). Since then, considerable 

progress has been made in the investigation of anaerobic oxidation of methane (Knittel & 

Boetius, 2009 and references therein). However, compared to methane oxidation the 

investigation of anaerobic oxidation of non-methane alkanes (C2 to C5) falls behind despite 

being present at marine seeps in significant amounts (Bose et al., 2013; Adams et al., 2013). 

In 2007, for the first time, sulfate reducers capable of anaerobic degradation of short chain 

alkanes (propane and n-butane) were enriched and isolated from sediments of  the Gulf of 

Mexico and Guaymas Basin (Kniemeyer et al., 2007). So far, most of the anaerobic 

hydrocarbon degraders of short chain alkanes that have been detected, are also only sulfate 

reducing bacteria (Musat, 2015 and references therein). Stoichiometric equations for 

anaerobic oxidation of some hydrocarbons by sulfate reduction are provided in Table 1.  

Under the absence of sulfate as an electron acceptor, anaerobic oxidation of alkanes can 

take place under methanogenic conditions (Zengler et al., 1999). For a long time, anaerobic 

oxidation of hydrocarbons was doubted. However, Zengler et al., (1999) showed the first 
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enrichment cultures that could degrade hexadecane under strictly methanogenic 

conditions (Eq. 1). 

   4𝐶16𝐻34  +  30𝐻2  → 49𝐶𝐻4  +  15𝐶𝑂2                                                               (𝐸𝑞. 1) 

Other studies have also reported methanogenic degradation of alkanes (for example, 

Siddique et al., 2006; Cheng et al., 2013). In subsurface petroleum reservoirs, where 

exogenous electron acceptors are missing, methanogenesis is the predominant process 

involved in the anaerobic oxidation of hydrocarbons (Jones et al., 2008; Sherry et al., 2014 

and references therein).   

 

 

Figure 5. A schematic representation of the biogeochemical zonation (marine redox ladder) in 
marine sediments along with a schematic representation of petroleum seeping out at the sediment. 
At marine seeps, petroleum enters from the energetically lower end of the marine redox ladder. 
Source: modified from (Jørgensen & Kasten, 2006); the left column represents the main zones 
proposed by (Froelich et al., 1979) and the zones mentioned in brackets are from (Berner, 1981); 
the middle column represents porewater chemistry of some dissolved species; the right columns 
shows the standard free energy yields (Burdige, 2006). 
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Table 1. Stoichiometric equations of anaerobic oxidation of different hydrocabrons  
under sulfate reducing conditions. Source: (Widdel et al., 2009). 
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2. Objectives 

The following study aims at understanding the microbial degradation of petroleum under 

in situ conditions of a marine seep. It will focus on the biogeochemical response of natural 

marine sediments to a simulated petroleum seepage. The main objectives of this study are:  

1) Which are the major processes responsible for petroleum degradation along its 

natural migration pathway in marine seeps? 

2) What is the succession of petroleum degradation along its natural migration 

pathway in marine seeps? 

3) Which microorganisms are the key hydrocarbon degraders and how are different 

microbial communities distributed along its natural pathway in marine seeps?  

4) How do different marine sediments with respect to their history of hydrocarbon 

adaptation respond to petroleum seepage?  

In order to meet the above goals, a sediment-oil-flow-through (SOFT) was set up that could 

simulate petroleum seepage in marine different marine sediments. Upon installing the 

SOFT system, comprehensive monitoring of the biogeochemical parameters was conducted 

on sediments undergoing petroleum seepage to answer the above questions.  
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3. Outline of manuscripts  

Chapters 4, 5 and 6 this PhD dissertation are presented in the form of scientific 

manuscripts for submission in scientific journals. Chapter 4 and 5 are already submitted 

and under review in a scientific journal. Chapter 6 is in preparation for submission to a 

scientific journal in March, 2016. My contribution to each manuscript as an author is 

described below:  

Manuscript I: Evolution of biogeochemical gradients and vertical succession of 

hydrocarbon degradation in Caspian Sea sediments subjected to simulated 

petroleum seepage  

Sonakshi Mishra , Marion Stagars , Peggy Wefers , Mark Schmidt , Katrin Knittel , Martin 

Krüger , Philip Steeb, and Tina Treude  

Submitted to: Environmental Microbiology, December 2015 (under review) 

This study was initiated by Tina Treude. Sonakshi Mishra designed the experiments with 

the input from Tina Treude and developed the Sediment-Oil-Flow-Through System with 

assistance from Philip Steeb. Sediment cores were collected by Sonakshi Mishra and 

Mark Schmidt. Sonakshi Mishra did the sediment and porewater sampling, the 

microsensor measurements, the porosity analyses as well as the sulfate reduction and 

alkalinity analyses. Set up of the oil analysis method and the analyses were done by 

Sonakshi Mishra and Peggy Wefers. Mark Schmidt carried out the measurement of C1 to 

C6 n-alkanes and isotope analyses of 13C-Methane. Molecular analyses were done by 

Marion Stagars and Katrin Knittel. Enrichment culturing was done by Martin Krüger. 

The manuscript was written by Sonakshi Mishra with the input of all coauthors.   

Manuscript II: Microbial community response to simulated petroleum seepage in 

Caspian Sea sediments  

Submitted to: Environmental Microbiology, December 2015 (under review) 

Marion Stagars, Sonakshi Mishra, Tina Treude, Rudolf Amann, and Katrin Knittel  

As a follow up to chapter 1, this study was initiated as a collaboration between Tina 

Treude from GEOMAR, Helmholtz Centre for Ocean Research, Kiel and Katrin Knittel 

from the Max Planck Institute of Marine Microbiology (MPI), Bremen. Microbial 



Chapter 3. Outline of manuscripts 
 

27 
 

community analyses and statistical analyses were done by Marion Stagars and Katrin 

Knittel. Experimental set up and sediment samples for the community analyses and the 

geochemical data for correlation and interpretation was provided by Sonakshi Mishra. 

The manuscript was written by Marion Stagars with the input from all the coauthors.  

Manuscript III: Comparative study of microbial petroleum degradation in marine 

seep vs. non-seep sediments in a simulated petroleum seepage  

In preparation: Geochimica et Cosmochimica Acta, (submission presumably in March, 

2016)  

Sonakshi Mishra , Marion Stagars , Peggy Wefers , Katja Laufer, Johanna Maltby, Mark 

Schmidt, Katrin Knittel, Ira Leifer  and Tina Treude   

This study was initiated by Tina Treude. Sonakshi Mishra carried out the experimental 

set up for the Sediment-Oil-Flow-Through System. Sediment cores were collected by 

Tina Treude, Johanna Maltby, and Ira Leifer. Sonakshi Mishra did the sediment and 

porewater sampling, the porosity analyses, the microsensor measurements and the 

alkalinity analyses. Sonakshi Mishra and Tina Treude did the sulfate reduction analyses. 

Set up of the oil analyses method and the analyses were done by Sonakshi Mishra and 

Peggy Wefers. Molecular analyses were done by Marion Stagars and Katrin Knittel. 

Sonakshi Mishra and Katja Laufer conducted the slurry experiments. Johanna Maltby 

provided the sulfate and methane data for the initial Eckernfoerde Bay core. Mark 

Schmidt carried out the measurement of C1 to C6 n-alkanes and 13C-Methane isotope 

analyses. The manuscript was written by Sonakshi Mishra with the input of all 

coauthors.    
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Abstract 

The microbial response to simulated petroleum seepage was investigated by incubating 

Caspian Sea sediments in a Sediment-Oil-Flow-Through (SOFT) system. Distinct redox 

zones established within the sediment core during upward petroleum migration and the 

sediment depths of these different geochemical zones changed over time. 

Methanogenesis and sulfate reduction were identified as important processes involved 

in the anaerobic degradation of hydrocarbons. The δ13C signal of produced methane 

decreased from -33.7‰ to -49.5‰ after 190 days of petroleum seepage indicating 

microbial methane production. The relevance of methanogenesis in anaerobic 

degradation of petroleum was further confirmed by enrichment culturing. Sulfate 

reduction related to petroleum seepage was indicated by enhanced activity and sulfide 

accumulation. Volatile hydrocarbons (C2 to C6 n-alkanes) were completely depleted 

within the sulfate-reducing zone and higher n-alkanes (C10 to C40) decreased step-wise 

towards the top of the sediment core. The SOFT system enabled for the first time quasi-

in situ monitoring of the successive response of geomicrobiological processes to 

petroleum seepage through sediment and revealed, to our knowledge, for the firs t time 

methane production related to hydrocarbon degradation under close natural conditions.  
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Introduction 

Petroleum comprises a complex mixture of hydrocarbons. Geothermal action on kerogen 

in fine-grained sedimentary rocks leads to the formation of petroleum over geological 

timescales. Petroleum then sometimes migrates from its source rock and accumulates, 

forming reservoirs, when overlaying impermeable rocks blocks its upward movement. 

From these reservoirs, petroleum may seep to the sediment/soil surface through faults 

and cracks driven by buoyancy, capillary pressure and hydrodynamic gradients (Tissot 

& Welte, 1984). The main groups of petroleum are saturated hydrocarbons (normal and 

branched alkanes), aromatic hydrocarbons, resins and asphaltenes (Tissot & Welte, 

1984). The two principal processes, through which petroleum enters the marine 

environment are either naturally through seepage (for example, Allen et al., 1970) or via 

anthropogenic accidents like oil spills (Water, 2011). It is estimated that 600 metric tons 

of oil enter the ocean each year via natural seeps accounting for 47% of the total 

petroleum input to the marine environment (Kvenvolden & Cooper, 2003). Here, 

petroleum is subjected to weathering by physical, chemical and biological processes 

(Wardlaw et al., 2008) and microbial degradation is the most important degradation 

process involved (Das & Chandran 2011 and references therein). Unlike marine oil 

spills, where petroleum enters through the oxygenated water column undergoing 

powerful breakdown by aerobic respiration (Head et al., 2006), petroleum in natural 

seeps enters microbial degradation from the anoxic, energetically lower end of the redox 

cascade. Hence, a different succession of microbial steps is expected in seeps compared 

to spills. Many studies have focused on the microbial degradation of spilled oil in the 

oceans’ water column (for example, Delvigne & Sweeney 1988; Atlas 1991; Prince et al. 

2003; Jiménez et al. 2006; Prince et al. 2013), but relatively few studies investigated the 

microbial degradation of petroleum in hydrocarbon seeps (for example, Wenger & 

Isaksen 2002; Wardlaw et al. 2008; Orcutt et al. 2010). Despite the increase in the 

number of studies on anaerobic degradation of hydrocarbons, there is still a lack of 

understanding how hydrocarbon-degraders act as a community in the environment and 

how petroleum is successively degraded under anoxic conditions (Head et al., 2006; 

Widdel et al., 2010). So far, selective utilization of hydrocarbons has been classically 

studied in enrichment cultures and isolates (for example, Ehrenreich et al., 2000; 

Rockne & Chee-Sanford, 2000; Cravo-Laureau et al., 2007; Kniemeyer et al., 2007). 

However, the use of batch cultures is insufficient to know the fate of petroleum in a 
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natural ecosystem (Horowitz & Atlas, 1977). Because it is impossible to mimic all 

environmental determinants in the laboratory, Horowitz and Atlas suggested that the 

best chance to predict the fate of petroleum in a natural ecosystem is through 

chemostats, which maintain a constant influx and efflux of nutrients and products, 

respectively. There are few studies in the literature that are based on continuous flow-

through systems to study petroleum hydrocarbon degradation (Bertrand et al., 1986) 

and oil spill scenarios (Horowitz & Atlas, 1977), but none on petroleum seepage in 

marine sediments. Investigations of hydrocarbon seeps often capture only snapshots of 

biogeochemical features (Bauer et al., 1988; Wenger & Isaksen, 2002; Wardlaw et al., 

2008; Orcutt et al., 2008) and are unable to follow the evolution of processes related to 

petroleum seepage through natural sediment. In the present study we developed a 

sediment-oil-flow-through (SOFT) system, modified from the sediment-flow-through 

(SLOT) system (Steeb et al., 2014). While the SLOT system simulates a natural methane 

seep in intact sediment cores, the SOFT system simulates petroleum-seep like condition 

(Fig. 1). The system enables us to monitor biogeochemical changes in the sediment core 

during petroleum seepage over time. To our knowledge, this is the first study that uses a 

continuous sediment-flow-through system to investigate the response of marine surface 

sediment to a simulated small-scale petroleum seepage. 

For our study we collected sediment cores from the Caspian Sea (Fig. 2), which is one of 

the oldest petroleum-producing regions in the world with enormous oil and gas reserves 

(Effimoff, 2000). Offshore drilling and land-based activities such as oil refineries, 

petrochemical plants, pipeline constructions have led to pollution and contamination of 

the Caspian Sea (Karpinsky, 1992; Dumont, 1995, 1998; Abilov et al., 1999). Moreover, 

natural hydrocarbon transport from greater depth to soil/sediment surface (e.g. by mud 

volcanism) is described for the South Caspian Basin (Katz et al., 2000; Akper, 2012). As 

the Caspian Sea is an enclosed basin, pollutants discharged into it accumulate and are 

partly trapped, e.g., in surface sediment. However, so far only a few studies have focused 

on the microbial community and crude oil degradation in sediments from the Caspian 

Sea (for example, Hassanshahian et al., 2012; Hassanshahian, 2014; Mahmoudi et al., 

2014).  

The aim of the present study was to investigate the evolution of biogeochemical 

gradients related to microbial petroleum degradation and the successive consumption of 
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hydrocarbons in Caspian Sea sediment during simulated seepage. We hypothesize that 

petroleum seepage through the Caspian Sea sediment will affect the vertical i) zonation 

of redox processes, ii) distribution of petroleum-degrading microbial communities, and 

iii) composition of seeping petroleum. We used the SOFT system to identify the above 

processes as a function of petroleum seepage. This is the Part I of the Caspian Sea SOFT 

experiment publication, which describes the SOFT methodology and presents detailed 

datasets on the successive biogeochemical response of the sediment to petroleum 

seepage and the alteration of the petroleum hydrocarbons. In Part II of the experiment 

publication (Stagars et al., this issue), a detailed microbial community analysis of the 

sediment and microbial distribution in response to the petroleum seepage (in the SOFT 

system) is presented.  
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Figure 1. Schematic diagram of the SOFT system simulating a petroleum seep. Artificial 
seawater was ventilated through the supernatant (P1, pump rate 25µL min-1) and aerated with 
an air pump (P2). Petroleum was pumped in by pump (P3) at 3.5 µL min-1 through two 
integrated channels within the bottom sealing. Vertically aligned rhizons (2.5 mm diameter) 
were permanently fixed for frequent extraction of porewater. Silicon-sealed holes (4 mm 
diameter) on the opposite side were used for microsensor measurements. From the oxic 
supernatant electron acceptors (O2, sulfate) entered the sediment by diffusion (dashed white 
arrows, P4).  
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Figure 2. (a) Map of Azerbaijan and Caspian Sea (b) Geographical map showing the push core 
sampling area (red dot). Characteristic features like on- and offshore mud volcanos (green dots), 
abandoned offshore wells and infrastructures (white spots and lines in the image), and a central 
oil slick area (dark grey area in the image) are indicated. FC1 and FC2 are nearby sites where 
geochemical analyses were done by (Jost, 2014). Map was produced by using ArcGIS 10.2, and is 
based on a regional SAR image taken in 2004 by ENVISAT (European Space Agency, ESA).  
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Results and discussion 

Migration of petroleum through the sediment core and changes of sediment 

properties 

Sediment cores between 16 and 18 cm long were collected from a coastal site of the 

Caspian Sea at around 60 cm water depth (sampling spot ~1x1 m). The cores were 

sandy with a porosity of 0.4 throughout their length. They had an overall greyish/brown 

color and were covered by a black sulfidic surface layer (ca. 0.5 -1 cm). Sea-grass like 

plants were growing at the sediment surface. Determination of sulfate reduction rates 

showed highest activity in the surface layer (see section Evolution of redox processes in 

response to petroleum seepage). Enhanced benthic rates of sulfate reduction and sulfide 

production are frequently found associated with the presence of sea grass, as the 

protruding plants serves as a trap for organic matter  (Holmer & Nielsen, 1997; Holmer 

et al., 2003).  

One of the collected sediment cores was subjected to simulated petroleum seepage using 

the SOFT system. Light crude oil from the North Sea/Mittelplate (provided by DEA 

Deutsche Erdoel AG) was used as the petroleum source. Petroleum was introduced from 

the bottom of the core at intervals of two to three days at a flowrate of 3.5 µL per 

minute. Over time, the core turned more and more into a blackish color due to the 

distribution of petroleum and the extension of sulfidic conditions. Within 1-2 days after 

the start of the flow, oil slicks formed at the surface of the overlaying seawater  from oil 

that had passed the sediment core. Petroleum droplets visibly seeped out of the 

sediment close to the core liner wall. High fluid flow through sediment cores can induce 

channelizing effects between the wall of the core liner and the sediment core, causing 

some fluid to move faster than the bulk volume (Steeb et al., 2014, 2015). Upon 

termination and slicing of the SOFT core we observed that although most of the 

petroleum seemed to be evenly distributed throughout the sediment, some petroleum 

accumulated in vein-like structures indicating such channelizing effects (Appendix 1). 

The actual migration of the bulk petroleum was indicated by the difference in the 

vertical distribution of organic carbon (Corg) between the initial (replicate) and the final 

SOFT core (Fig. 3). Petroleum hydrocarbons represent a form of organic enrichment of 

marine sediments (Bauer et al., 1988). Hence, an enrichment of Corg in the SOFT core can 

be interpreted as the introduction of petroleum by seepage. While a relatively low 
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amount of Corg (0.2 to 0.5 %) was found throughout the initial core, Corg increased with 

increasing sediment depth in the SOFT core  (from 1 to 11.2 %, Fig. 3), marking the 

movement of the petroleum in the core. In accordance with the increase in Corg, the C/N 

ratio of the sediment drastically increased with depth as compared to the initial core 

(from 7 to 9 in the initial core to 30 to 235 in the final core, Fig. 3). Beside the variable 

C/N ratio of organic precursors (terrestrial or marine) the C/N ratio of petroleum 

(~170) is highly enriched compared to kerogen (~40) during catagenesis (e.g. Hunt, 

1979). A similar observation was made in sediment cores from an active hydrocarbon 

seep zone in the Coal Oil Point Field (water depth 22m, Santa Barbara Channel, 

California) where the C/N ratio increased with increasing oil content (LaMontagne et al., 

2004). While most organic-rich sediments receive their organic matter input from the 

water column, seep sediments are mostly supplied from the subsurface through the 

upward flux of petroleum hydrocarbons (Reed & Kaplan, 1977; Bauer et al., 1988). As a 

result, some features are unique to petroleum seeps like the increase of organic carbon 

with sediment depth (Bauer et al., 1988). Sediment porosity in the present study 

decreased from values of about 0.4 in the initial core to a lowest value of 0.2 in the final 

SOFT core at its deepest layer (15 cm, Fig. 3). Over the entire SOFT core, porosity 

decreased from 0.4 at the surface to 0.2 at the deepest layer (Fig. 3C). The decrease in 

porosity in the SOFT core indicates that pore spaces in the sediment were partly filled 

with petroleum, which could not be removed during the freeze-drying process of the 

analytical procedure for porosity determination. We assume that the pore volume of the 

deepest layer was probably 100% saturated with petroleum due to constant supply of 

petroleum from below. A porosity of 0.2 would, however, indicate that probably the 

more volatile fractions of the petroleum were lost during the freeze-drying process. 

Reduction in pore space imposes mechanical constraints on habitability of bacterial cells 

in sediments (Rebata-Landa & Santamarina 2006 and references therein). Total cell 

counts by DAPI staining in the SOFT core revealed a decrease in cell numbers up to one-

forth below 6 cm depth and an increase in the upper half above 6 cm by a factor between 

1.1 and 2.6 compared to the initial core (Fig. 4). It should be noted that due to lack of 

overlapping of a few sampling depths between the initial and SOFT core (see Fig. 4), 

linear interpolation was used to estimate the missing of cell numbers in adjacent depths 

for better comparison. The reduction in total cell number in the deeper part of the SOFT 

core could be the result of a decrease in available habitable pore space that was 
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occupied by petroleum or toxicity of petroleum itself. Consequently, such mechanical 

constraints could limit microbial activity in a seep system, despite the presence of a rich 

organic food source.  

 

Figure 3. Vertical profiles of sediment parameters determined in the initial Caspian Sea core 
(blue) and the SOFT core after 190 days (red, final). Left: organic carbon (Corg %). Middle: C/N 
ratio, Right: Porosity. 

 

Figure 4. Total cell numbers as detected by DAPI staining in the initial core and the final SOFT 
core. 
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 Evolution of redox processes in response to petroleum seepage 

Concentrations of dissolved electron acceptors (like oxygen and sulfate) and 

corresponding reduced products (like sulfide) in the porewater of the SOFT core 

indicated a vertical zonation of redox processes (Fig. 5 and 6). The zonation was in line 

with the natural redox ladder found in marine sediments (Jorgensen, 2006): we 

observed the transition from oxic to anoxic conditions, and within the anoxic sediment a 

separation into a top sulfate reduction and a bottom methanogenic zone. The 

identification of a denitrification zone was not possible, as the determination of nitrate 

in the porewater by ion chromatography was interfered by the presence of oil.  However, 

none of the known nitrate-reducing hydrocarbon degraders have been detected by 

Stagars et al. (this issue). In the following we will discuss the temporal evolution of the 

oxic and anoxic zone. 

Oxic zone 

Thermodynamically, oxygen is the most favored electron donor in marine sediments 

(Glud, 2008) and the penetration depth of oxygen controls the depth distribution of 

other redox processes (Cai & Sayles, 1996). Microprofiles of oxygen concentration were 

taken during the SOFT experiment (Fig. 4). We have no oxygen data from the initial 

condition because the sediment cores were sealed and stored for 3 months before the 

start of the experiment and we therefore assume that oxygen was completely consumed 

in the core liners. The total oxygen uptake (TOU) of sediment is a measure for organic 

carbon mineralization, as it sums up aerobic respiration as well as the oxidation of 

reduced chemical species produced during anaerobic respiration (Canfield et al., 1993; 

Glud, 2008). The diffusive oxygen uptake (DOU) represents the part of TOU that is 

dominantly mediated by microbial respiration at the seafloor and can be calculated from 

microsensor profiles (Glud, 2008; Boetius & Wenzhöfer, 2013). Oxygen penetration 

depth and the DOU for the SOFT core were calculated from the microsensor profiles 

according to (Glud et al., 1994). The penetration depth almost linearly decreased from 

ca. 3.8 mm on day 44 to only 2 mm after 190 days, i.e., the end of the experiment (Fig. 5). 

Simultaneously, the DOU increased from 3.8 mmol m-2 d-1 on day 44 to 8.6 mmol m-2 d-1 

on day 190 (Fig. 5). Thinning of the oxygen penetration layer indicates an increase in 

oxygen demand most likely as a result of microbial petroleum degradation, similar to the 

effect organic enrichment through pelagic carbon export has on DOU and oxygen 
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penetration depth in sediments (Glud 1994). Likewise, sediments from cold seeps are 

reported to have elevated DOU rates up to two orders of magnitudes higher compared to 

non-seep sediments (Boetius & Wenzhöfer, 2013).  

 

 

Figure 5. Left: Temporal development of sediment microprofiles of oxygen after the start of the 
SOFT experiment. Values are mean of three separate vertical profiles but with different 
horizontal positions (±SD,n=3). The dashed horizontal line represents the sediment-water 
interface. Right: Temporal development of the oxygen penetration depth (PD) and the diffusive 
oxygen uptake (DOU).  

 

Anoxic zone 

Total sulfide and sulfate concentrations steadily increased and decreased, repectively, in 

the sediment porewater (Fig. 6), pointing to the stimulation of sulfate-reducing bacteria 

(SRB). Over time, the sulfate reduction zone moved upwards, reaching its strongest 

development between 0 to 8 cm at the end of the incubation (190 days). At this point, 

sulfate penetration was limited to 8 cm (starting off at 16 cm at the beginning of the 

experiment). While the highest individual sulfate reduction rates were detected in both 

in the initial (98.1 nmol cm-3 d-1, 0-1 cm) and the final SOFT core (91 nmol cm-3 d-1, 2-4 

cm) (Fig. 6), sulfate reduction integrated over 0-16 cm doubled from 2.8 mmol SO42- m-2 

day -1 before (initial core) to 5.7 mmol SO4 2- m-2 day -1 after petroleum seepage (SOFT 

core). Marine hydrocarbon seep sediments are known to facilitate high sulfate reduction 

activity compared to non-seep sediments (Joye et al., 2004; Orcutt et al., 2010). An 
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overview of sulfate reduction rates at selected hydrocarbon seep sites from the Gulf of 

Mexico is provided in Table 1. Here, sulfate reduction reached some of the highest 

activity reported for marine sediments (244.3 mmol SO4 2- m-2 day -1 (Joye et al., 2004), 

which was found to be coupled mainly to hydrocarbons degradation rather than to 

"normal" organic matter degradation or to the anaerobic oxidation of methane (Joye et 

al., 2004; Orcutt et al., 2010). In the present study from the Caspian Sea, enhanced 

sulfate reduction after petroleum seepage likewise pointed to the utilization of 

petroleum compounds by SRB (see also the following section). Stagars et al. (this issue) 

discovered a high diversity of SRB in the initial core, whose relative sequence abundance 

increased in the SOFT core after petroleum seepage. Cell numbers of hydrocarbon-

degrading SRB like Desulfobacula and clade LCA2 increased in the sulfate-reducing zone 

of the SOFT core compared to the initial core. The distribution of the petroleum-

degrading SRB and the increase in relative cell numbers of some petroleum-degrading 

groups together with elevated sulfate reduction activity in the SOFT core identifies 

sulfate reduction as an important process in the anaerobic degradation of petroleum in 

Caspian Sea sediments. Below the sulfate reduction zone (0-8), i.e., below the 

penetration of sulfate, methane production was observed in the final SOFT core 

indicating the presence of a methanogenic zone . Methanogenesis will be discussed in 

more detail in the following sections. 

 

Table. 1. Comparison of integrated sulfate reduction rates at hydrocarbon seep sites with 
sediments used in this study. 
 

Study site Integrated 

depth (cm) 

SRR 

(mmol m-2 day -1) 

Reference 

Caspian SOFT 0-15 5.7 Current study 
 

Caspian Initial 
 

0-15 2.8 Current study 

Gulf of Mexico 0-10 5.6-27.9 (Orcutt et al., 2010) 

Gulf of Mexico 0-10 10.1 (Orcutt et al., 2010) 

Gulf of Mexico 0-10 30 (Orcutt et al., 2005) 

Gulf of Mexico 0-13.5 244.3 (Joye et al., 2004) 
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Figure 6. Temporal development of biogeochemical profiles in the Caspian Sea sediment core 
used in the SOFT system over the course of the experiment. Sulfate (blue line with triangles), 
total sulfide (black line with squares), sulfate reduction rates (SRR, green bars) and methane 
(pink line with circles). Sulfide data were corrected for the shift in the electronic signal of the 
microsensors (between 0.5 to 1.5 mV). Initial conditions were measured in a replicate core 
before the start of the SOFT system. SRR bars in the initial plot represent the average of two 
replicates, while single values of the SRR replicates are shown as empty black squares and 
diamonds. In the final core (190 d) only one SRR replicate is shown. The sample at depth 9 cm 
was lost during the radiotracer injection. Please consider the change of scale in some of the x-
axes. 
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Vertical alteration of n-alkanes and correlation to biogeochemical processes 

Petroleum consists of four main groups: the saturated and aromatic hydro carbons and 

the non hydrocarbon part resins and asphaltenes (Head et al., 2006). The saturated 

hydrocarbons comprise normal and branched alkanes and cycloalkanes; the aromatic 

hydrocarbons comprise pure aromatics, cycloaromatic, and cyclic sulfur compounds; 

resins and asphaletenes are high molecular weight compounds comprising N, S and O 

atoms (Tissot & Welte, 1984). Saturated hydrocarbons and aromatics are more easily 

degraded by microbial activity unlike the resins and asphaltenes, which are resistent to 

biodegradation (Head et al., 2006). Since saturated hydrocarbons form the largest part 

of the biodegradable petroleum, our study focuses on the degradation of n-alkanes. The 

volatile fraction (headspace gas) of the n-alkanes (C1 to C6) appeared to be consumed 

during the upward migration of the petroleum, as it completely disappeared in the 

upper 4 cm of the SOFT core (Fig. 7). Since the top 8 cm of the core was the zone with 

the highest sulfate reduction activity (Fig. 6), we postulate that sulfate reducers were 

mainly responsible for the degradation of these volatile short-chain n-alkanes. The 

degradation of n-alkanes via sulfate reduction is supported by the increase of alkane-

degrading SRB cell numbers in the SOFT core after petroleum-flow-through (Stagars et 

al. this issue). Anaerobic oxidation of short-chain alkanes by SRB has been reported in 

marine hydrocarbon seep areas of the Gulf of Mexico and the Guayamas basin 

(Kniemeyer et al., 2007; Kleindienst et al., 2014). The presence of alkane-degrading SRB 

and degradation of C1 to C6 n-alkanes in the sulfate-reducing zone (0 to 8 cm) also 

indicate that the short-chain alkanes were mainly degraded after they had passed 

through the methanogenic zone below (8 to 16 cm) (Fig. 7). Methanogenic petroleum 

degradation mainly utilizes long-chain n-alkanes (Zengler et al., 1999; Anderson & 

Lovley, 2000). When offered C6 to C10 n-alkanes (Siddique et al., 2006), methanogens 

preferedly degraded n-alkanes in the sequence C10>C9>C8>C7>C6. The preferential 

degradation of longer over shorter chain n-alkanes by methanogens might explain, why 

in our SOFT core the C1 to C6 n-alkane degradation was observed only within the 

sulfate-reducing zone (Fig. 7). The largest absolute amount of higher n-alkanes (C10 to 

C40) was found in the deeper sediment layers, probably as the petroleum was 

introduced from the bottom (Fig. 8), from where concentrations of some n-alkanes 

decreased along with the upward migration. The relative decrease in the concentrations 
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of each n-alkane was calculated by normalizing against their corresponding 

concentration at 15 cm depth by formula (1) 

[n-C x cm / n-C 15 cm ] × 100                                                              (1) 

where “n-C x cm” and “n-C 15 cm” are the concentrations of an n-alkanes at a certain depth 

and at 15 cm depth, respectively. A succesive relative decrease in all n-alkanes towards 

the surface was observed (Fig. 8). For example, concentrations of lower n-alkanes like 

C10 and C12 n-alkanes decreased by around 100% and 70%, respectively, from 15 cm to 

7 cm sediment depth. In comparison, the concentration of C14 to C26 n-alkanes 

decreased only by around 50%. The decrease in n-alkanes over decreasing depth 

indicates successive degradation but could also represent partly unfinished (non -

steady) vertical migration of petroleum. To check if there was a change within the 

petroleum composition, contributions of individual n-alkanes to the total measured n-

alkanes are shown as pie charts (Fig. 9). The contribution of lower n-alkanes (C10 to 

C14) to the total alkane at 1.5 cm content decreased by around 50% compared to their 

contribution at 15 cm (~16% at 15 cm and ~8 % at 1.5 cm) indicating preferential 

degradation of the lower n-alkanes during the ascent of the oil (Fig. 9). The preferential 

degradation of lower n-alkanes compared to higher n-alkanes in the petroleum 

composition confirms that successive decrease in n-alkanes with decreasing sediment 

depth was not just a result of uneven or unfinished migration of petroleum in the core. 

Vertical succession of n-alkanes was likewise found in an oil-seep core (2 m length) 

collected off the coast of West Africa targeting the surface expression of a fault (Wenger 

& Isaksen 2002). Thermogenic oil and gas (C1 to C5 iso- and n-alkanes) were found 

throughout the core, but were essentially unaltered in the deepest layer (2 m below 

seafloor), while the shallower depths (from 1m up to the seafloor) showed a progressive 

upward degradation. A similar trend was found in oil samples from Coal Oil Point seeps  

(Santa Barbara, California), where n-alkanes had been decreased by 100% in the oil 

seeping from the seafloor compared to the deeper reservoir oil (Wardlaw et al., 2008). 

The authors identified biodegradation as the main cause for the loss of n-alkanes. In the 

same study, it was found that physical processes like evaporation and dissolution had no 

significant effect on the loss of n-alkanes between the reservoir oil and the seafloor oil. 

Based on the observations made in the present study, i.e., the evolution of redox profiles, 

the increase in microbial activity, and the presence of hydrocarbon degraders (Stagars et 
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al., this issue), we conclude that microbial activity led to the successive degradation of n-

alkanes in the Caspian Sea core during the SOFT experiment.  

 

Figure 7. Vertical distribution of volatile n-alkanes (from C1 to C6: Methane, Ethane, Propane, n-
Butane, i-Butane, Pentane and Hexane) over depth in the Caspian Sea core at 190 d after the 
SOFT experiment. ). The grey shaded area represents the methanogenic zone of the core, the 
non-shaded area represents the sulfate reduction zone, and the green shaded area represents 
the oxic zone in the SOFT core at 190 d. 
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Figure 8. A) Vertical distribution of higher hydrocarbons (n-alkanes C10 to C40) in the Caspian 
Sea core after the SOFT experiment. Surface sediment (0-1 cm) is excluded, due to possible 
influence from the overlaying oil slick that settled on the sediment during slicing of the core (see 
text) B) Relative decrease in the concentration of n-alkanes over depth. The relative 
concentrations are normalized against the deepest layer (15 cm). The red line shows the ratio of 
the weight of petroleum extract at each depth to the respective sediment weight and represents 
the movement of petroleum in the SOFT core. 

 

 

 



Chapter 4. Evolution of biogeochemical gradients and vertical succession of hydrocarbon 
degradation in Caspian Sea sediments subjected to simulated petroleum seepage 

 

46 
 

Figure 9. Percentage of individual n-alkanes with respect to total n-alkanes measured. Left: 
Original crude oil used for the SOFT experiment. Middle: n-alkane composition at 15 cm depth of 
the SOFT core (deepest layer) Right: n-alkane composition at 1.5 cm depth of the SOFT core 
(close to surface). 

 

Methanogenic petroleum degradation in the SOFT sediment 

After the SOFT experiment, a methanogenic zone was evident below the sulfate-

reducing zone (below 8 cm) as indicated by methane concentration and carbon isotopic 

ratios (Fig. 10). Porewater concentrations of methane increased from around 3 µM in 

the initial core up to around 2300 µM in the SOFT core in the methanogenic zone. 

Isotope analysis revealed a decrease in the δ13C signal of methane in the SOFT core 

(after petroleum seepage) compared to the initial core (Fig. 10). At 8 and 10 cm depth, 

the δ13C signal of methane decreased from -33.7‰ and -36.7‰ to -49.5‰ and -43.6‰ 

respectively. Cell numbers of methanogenic archaea also increased after petroleum 

seepage in the methanogenic zone (Stagars et al, this issue) and Methanosarcina spp was 

found to be the most dominant archaeal species. The decrease in the δ13C signal in the 

SOFT core compared to the initial core indicated a shift from a more thermogenic 

towards a more biogenic source of methane after the petroleum seepage (see Whiticar, 

1999). The original petroleum had less than 1% methane (according to DEA Deutsche 

Erdoel AG). Gas chromatographic headspace analyses of orginial petroleum gave a 

concentration of 82.8 µmol/ml petroleum (Appendix 2) and a 13C signal of -40.3 ‰ for 

methane. Therefore, with respect to δ13C signal of methane in both the initial sediment 

core and the petroleum, a decrease in the 13C signal of methane over time indicates 

microbial methane production in the SOFT core. In another study in the South Caspian 

Sea basin, methanogenesis was postulated for sediment cores (20 to 30 cm long, FC1 

and FC2 in Fig. 2; Jost, 2014) collected at a “non-seep” offshore site located nearby our 

sampling site. In FC-sediment cores, methane concentrations increased with depth and 

showed a typical biogenic signature of -65.5 ‰ indicating organic matter degradation 

by methanogenic archaea. Their study concluded that methanogenesis is an important 

process involved in the anaerobic degradation of organic matter  in Caspian Sea surface 

sediments. In our study, the δ13C methane data of the initial sediment core ranged 

between -33.7‰ and -36.7‰ indicating a contribution of thermogenic methane 

possibly from the nearby mud volcano complex (Fig. 2). After 190 days of simulated 
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petroleum seepage, a shift towards biogenic methane (-49.5‰ and -43.6‰; Fig. 10) 

was indicated in the SOFT core. It can be speculated that over longer seepage time, the 

δ13C signal could have either been further shifted towards a pure biogenic signal or 

maintained a steady state of around -50 ‰ due to the constant inflow of fresh 

thermogenic petroleum (including thermogenic methane) and the partial microbial 

degradation/conversion of the petroleum to biogenic methane. 

 

Figure 10. δ13C of methane and methane concentration in two replicate Caspian Sea cores 
before (initial) and after the SOFT experiment (190 days, Final). The shaded area represents the 
methanogenic zone of the core and the non-shaded area represents the sulfate reduction zone. 
Some δ13C values are missing for some depths because the methane concentrations were too 
low for analyses. 

 

As the amount of Corg was rather low in the initial sediment core and increased only after 

petroleum addition (Fig. 3), we argue that the observed methanogenesis can be 

attributed to petroleum degradation. In order to test this hypothesis, sediment samples 

of the SOFT core from both the sulfate-reducing zone (0 to 8 cm) and the methanogenic 

zone (8 to 16 cm) were enriched in sulfate-free medium with selected petroleum 

hydrocarbons (hexadecane, methylnapthalene, toluene and ethybenzene). Methane 

production was monitored over time and methanogenesis rates were calculated by 

linear regression (Fig. 11, Table 2). The highest methanogenesis rates were observed in 

treatments with hexadecane (16.08 and 13.8 nmol d-1 ml-1 sediment ) and 

methylnapthalene (12.8 and 10.3 nmol d-1 ml-1 sediment) in both the sulfate reducing 
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and methanogenic zone, respectively (Table 2). The positive response to petroleum 

treatment and elevated methanogenesis rates compared to the controls support that the 

methanogenesis observed in the SOFT core was related to the biodegradation of 

petroleum. It should be noted that unlike in the SOFT core, methane production was  

observed (and highest) in the enrichment cultures from the sulfate-reducing zone, 

suggesting that the SRB outcompeted methanogens during the SOFT experiment (Fig. 6). 

Several previous laboratory studies with batch cultures demonstrated methane 

production when offering hexadecane or petroleum indicating methanogenic 

degradation of these compounds (Zengler et al., 1999; Anderson & Lovley, 2000; Jones et 

al., 2008; Sherry et al., 2014). The SOFT system revealed, to the best of our knowledge, 

for the first study methanogenic activity related to petroleum degradation under close 

natural conditions. 

 

 

Figure 11. Methane production in enrichment cultures in sediment samples from the 
methanogenic and sulfate-reducing zone. 

 

Table 2. Rates of methanogenesis in enrichment cultures with sediment samples from SOFT 
core. 
 

Zone Treatment Methanogenesis rate 
(nmol d-1 ml-1 Sediment) 

Sulfate reducing zone Only sample 

Killed sample 

+ Hexadecane 

+ Ethylbenzene 

+ Methylnaphthalene 

1.6 

0.0 

16.7 

0.7 

12.8 
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Conclusion 

The present study demonstrated the functionality of a new sediment-oil-flow-through 

(SOFT) system that simulates a small-scale petroleum seepage through intact sediment 

cores and facilitates comprehensive monitoring of biogechemical parameters. We 

showed in the example of Caspian Sea sediments that microbial degradation of seeping 

petroleum affects the temporal and spatial distribution of redox processes and alters the 

composition of petroleum. After passing the sediment, petroleum was found to be 

depleted in short chain n-alkanes. Volatile n-alkanes were completely consumed during 

the ascent of the petroleum and lower chain n-alkanes (up to C14) were preferentially 

degraded over the higher n-alkanes. Methanogenesis and sulfate reduction were 

identified as important processes involved in anaerobic degradation of petroleum in the 

selected sediments. Carbon isotopic analyses of methane (which probably represented a 

mixture of ascending thermogenic and in-situ produced biogenic methane) following 

petroleum seepage suggest that a high methane concentration combined with δ13C 

signals in the range of -50 ‰ in surface sediments could be an indication for underlying 

active seepage undergoing methanogenic petroleum degradation.  

  

+ Toluene 
 

0.6 

Methanogenic zone Only sample 

Killed sample 

+ Hexadecane 

+ Ethylbenzene 

+ Methylnaphthalene 

+ Toluene 
 

1.1 

0.0 

13.8 

0.6 

10.3 

2.3 
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Experimental Procedures  

Setup of the SOFT system 

A sediment-oil-flow-through-System (SOFT System) was developed to simulate 

petroleum seepage in intact sediment cores by pumping petroleum from the bottom and 

providing diffusive supply of electron acceptors via oxic artificial seawater from above 

(Fig. 1). The SOFT system was modified after the sediment-flow-through (SLOT) system 

established by (Steeb et al., 2014), which simulates methane seepage (see Appendix 4 

for a detailed comparison). An intact sediment core was collected with a gas-tight 

polycarbonate core liner (Appendix 2 and 4). The core liner had 3 vertical lines of 21 

sampling holes each (diameter 4 mm, distance between two holes 5.8 mm). The holes 

were sealed with residue-free silicon (Aquasil, Probau). The top cap of the core was 

equipped with 3 openings (diameter ~3.5 mm) to feed through tubing (Iso-versinic, 

LLG; inner diameter 1 mm and outer diameter 3 mm) from an air pump, from a seawater 

reservoir (inflowing seawater), and to a wastewater reservoir (outflowing seawater). 

Aeration by air pump in the supernatant water was applied to facilitate a natural redox 

zonation (from oxic to anoxic) in the sediment core. Care was taken that the air flow was 

not too strong to avoid disturbance of the sediment surface layer. The upper end of the 

core liner was covered by a semi open PVC cap (Appendix 2), wrapped with permeable 

laboratory film (Parafilm, Pechiney Plastic Packaging), to allow gas exchange with 

atmosphere. The bottom part of the core was kept anoxic by sealing the end of the core 

liner with a rubber stopper (Appendix 2). Two metal tubes cut from biopsy needle 

holder (O-MAX T Knochenmark-Biospie-Set; outer diameter 3mm, inner diameter 1.9 

mm) were integrated in the rubber stopper as crude-oil inlets. All tubing connections 

(sediment core, crude oil reservoir, seawater reservoir, collection bottle and air pump) 

were established with gas tight and autoclaveable Iso-versenic tubes (LLG), 

polypropylene tube connectors and fast couplers. Crude oil was pumped into the 

sediment core at ~ 3.5 µl min-1 with peristaltic pumps (Medorex, TL/10E, min/max 

pump volume 0.1 μL min–1/400 μl min–1 ) using Santropen tubes (Medorex; 

autoclaveable, highflexible, very resistant against corrosive media; inner diameter 0.5 

mm, outer diameter 1.6 mm). Petroleum pumping was switched on and off at frequent 

intervals (two to three days of no-flow vs. two to three days of oil-flow) to imitate 

natural variability of petroleum migration and to offer organisms sufficient time for 



Chapter 4. Evolution of biogeochemical gradients and vertical succession of hydrocarbon 
degradation in Caspian Sea sediments subjected to simulated petroleum seepage 

 

51 
 

degradation in their microhabitat. A layer of petroleum (oil slick) formed at the water-

air interface from the petroleum that seeped out of the sediment core. The oil slick was 

periodically removed with sterile syringes to avoid overflow. Light and live crude oil 

(i.e., oil with a low viscosity/specific gravity and containing dissolved gas in solution), 

originating from the North Sea (Mittelplatte) was provided by Dea Deutsche Erdoel AG 

(sampled in February 2013). Artifical seawater was supplied to the overlaying seawater 

through a inlet tube with the help of the persitaltic pumps at a flow rate of 25 µl min-1. 

Simultaneously, an outlet tube was placed at a level higher than the seawater inlet tube , 

which removed the overlaying seawater at 25 µl min-1 to maintain a constant level of 

overlaying seawater. Cotton plugs were applied to the seawater reservoir to maintain 

the seawater sterile and oxic. The outlet tube connecting the seawater reservoir with the 

SOFT liner was integrated into the cotton plug. The seawater reservoir bottle, the cotton 

plug, and the inlet were autoclaved at 120°C for 65 minutes prior to usage. In order to 

keep the seawater as natural as possible, no specific nutrients or vitamins were added 

Seawater was prepared by mixing 12 g of sea salts (Sigma Aldrich, product number 

S9883) in 1000 ml of sterile deionized water to achieve a salinity of 12 psu. Additional 

sulfate was added in the form of magnesium sulfate to obtain the sulfate concentration 

of the initial core, which was determined to be around 24 mmol L -1. The entire SOFT 

experiment was carried out in the dark in an incubator at 16°C. The temperature was 

chosen because it was around the average temperature of Caspian Sea surface water in 

Baku in November, i.e., during our sampling campaign 

(http://seatemperature.info/november/azerbaijan-water-temperature.html).  

 

Study site and field sampling 

In November 2012, three replicate sediment push cores (30 cm long, 6 cm inner 

diameter) were collected from a coastal area in the Caspian Sea near Baku, Azerbaijan 

(Fig. 2). The initial cores used for sediment and porewater analyses were 18 cm and 16 

cm long, respectively. The core selected for the SOFT experiment was 16 cm long. 

Additionally, two replicate mini push cores (30 cm long, 2.6 cm inner diameter) were 

collected for determination of sulfate reduction rates. The mini cores were 16 and 12 cm 

long. The sampling site was located in the South Caspian Sea basin (N 39 59.548, E 49 

28.775). The Caspian Sea is the largest continental water body and the rivers Volga, 

Kura, and Ural are the three biggest contributors of its inflow and nutrients (Dumont, 
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1998). It has an area exceeding 390,000 km2 with a water volume of around 78,000 km3 

(Kosarev, 2005). The salinity of the Caspian Sea is around 12 psu and the relative 

concentrations of SO42- (~31 mM), Ca2+ (8~ mM) and Mg2+ (~29 mM) are higher than in 

average seawater due to the inflowing rivers Volga and Kura (Millero & Chetirkin., 1980; 

concentrations from Peeters et al., 1999). The sampling site was chosen due to presence 

of natural hydrocarbon seepage structures like off and on shore mud volcanoes (Fig. 2). 

Petroleum hydrocarbons in the Caspian Sea were first identified through the presence of 

active oil and gas seeps that are associated with mud volcanoes (Katz et al., 2000). The 

water depth at the sampling site was around 60 cm. Sediment cores were collected in 

PVC core liners (see section Set up of the SOFT system) by directly walking into the water 

and pushing the liners into the sediment by hand. The sediment cores were sealed air-

free (filled with seawater to the brim) with rubber stoppers. The cores were stored at 

the Geological Institute of Azerbaijan in the dark at ~10°C until they were shipped to 

Kiel in February 2013. Upon arrival in Kiel, the sediment cores were kept in a cold room 

(10°C) and their initial condition measurements were done 10 days later. After the 

initial measurements were done, the cores were stored at 0°C until the  SOFT system 

(petroleum seepage) was started 2.5 months later. For the initial conditions, two 

replicate push cores were analyzed to study initial geochemical and molecular 

parameters, i.e. before the start of SOFT experiment (further details see below), as well 

as two replicate mini push cores for the determination of sulfate reduction ra tes.  

Microelectrode measurements 

One set of sampling holes in the SOFT liner that were sealed with silicon was used for 

microelectrode measurements. Dissolved total sulfide was measured with a needle H2S 

microelectrode (Unisense, Denmark; H2S–N, tip diameter 0.8 mm). It was inserted 

horizontally around 3 to 4 cm into the sediment core through the silicon filled liner 

holes (Steeb et al., 2014). The sensor was calibrated by 6 different concentrations of 

Na2S standard solution (0, 100, 200, 500, 1000, 2000 μmol l–1). The standards were 

prepared with oxygen-free citric acid-phosphate buffer, 10 % v/v TiCl and set to pH 7.5 

as this value represented the relatively consistent average pH of the sediment core (data 

not shown). Hence, it has to be kept in mind that total sulfide data were not corrected 

for individual pH data points. The calibration standards were stored at 16°C 

(experimental temperature) overnight to obtain the same temperature as the sediment 
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core. Cooling packs were used to keep the sediment cores at 16°C (incubation 

temperature) while measurements were performed at room temperature. After 

penetration into the core, the sensors were allowed to adapt between 15 to 20 minutes  

until the signal drift reduced and a value was noted that was at least 90 % of the 

response signal (Steeb et al., 2014). The microsensor calibration was done prior to 

measurements using the calibration software offered by Unisense (SensorTrace PRO), 

which provided signals in millivolt and the corresponding concentration for each data 

point. The data were corrected for the shift in the electronic signal at the end of the 

measurement.  

Oxygen was measured with miniaturized Clark-type glass microelectrode (Unisense, 

Denmark; OX-100, tip diameter 100 µm). As the overlaying seawater in the SOFT core 

was constantly bubbled with air and sealed with Parafilm (Pechiney Plastic Packaging, 

Menasha) we assumed 100% oxygen saturation. Therefore, a two point calibration was 

done using the overlaying water as 100% atmospheric oxygen and the lowest signal in 

the sediment as the zero reading (0% oxygen). Vertical profiling over 5 cm depth was 

done with a step size of 100 µm measuring period of 3s and waiting period of 15 s. 

Microsensor measurements were taken periodically (every 30 to 40 days) and were 

done before porewater sampling to avoid disturbances in the sediment by the porewater 

extraction. 

Porewater sampling in SOFT 

Rhizons (Rhizosphere, CSS-F, length 5 cm, diameter 2.5 mm, pore size 0.2 μm) were used 

to extract porewater from the initial sediment core. For the SOFT core, the rhizons were 

permanently fixed to one set of the three vertical sampling hole lines in the core liner for 

the entire duration of the experiment (for technical details see Steeb et al. 2014). 

Porewater was extracted with rhizons periodically (30 to 40 days) followed by 

geochemical analyses. Porewater extraction analyses were done at the end of the 

microsensor analyses (see above). Around 1.5 to 2 ml of porewater was extracted per 

rhizon. Porewater samples were taken in 2 cm intervals. Considering a sediment 

porosity of ca. 0.4 and an inner core liner diameter of 6 cm, a cross sampling of 

porewater with the rhizons can be avoided between two adjacent sampling depths (2 cm 

in our core) as long as the volume extracted does not exceed 3.6 ml (Seeberg-Elverfeldt 

et al., 2005). Around 0.05 to 0.1 ml of the porewater was used for immediately 



Chapter 4. Evolution of biogeochemical gradients and vertical succession of hydrocarbon 
degradation in Caspian Sea sediments subjected to simulated petroleum seepage 

 

54 
 

measuring total alkalinity by titration. The rest of the porewater was stored in 2 ml 

plastic cyro-vials at -20°C, and was later used for analyzing sulfate by ion 

chromatography. In addition to porewater, seawater was sampled from the seawater 

reservoir and the overlaying seawater. 

Geochemical porewater analyses 

Porewater concentrations of sulfate was determined by ion-chromatography. A 

Metrohm ion-chromatography equipped with a conventional anion-exchange column 

and carbonate-bicarbonate solution as eluent was used. The IAPSO standard seawater 

was used for calibration. Sulfate was measured with a conductivity detector (Wallmann 

et al., 2006).  

End of the SOFT experiment and core slicing for sediment analyses 

After 190 days, the SOFT experiment was stopped. The bottom cap was removed slowly 

and the core liner was immediately placed on the extruder (diameter ~5.8 cm). The 

overlaying seawater was removed from the top with a 60 ml syringe. However, during 

removal of the supernatant, we observed an oil slick settling on the sediment surface. 

We therefore consider the 0-1 cm sediment layer to be not representative for some 

sediment parameters (e.g., n-alkane alteration after seepage in the SOFT incubation) 

because of the additional petroleum hydrocarbons that might have originated from the 

overlying oil slick. The sediment core was sliced vertically from top to bottom every 1 

(0-3 cm) to 2 cm (3 cm until end of core). Sediment samples were then subsampled for 

the analyses of C1-C6 n-alkanes and their δ13C-methane isotopic signature, C9-C40 n-

alkanes, porosity, sulfate reduction rates, total CNS, 16S rRNA phylogenetic studies, 

catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH), and 

enrichment culturing for methanogens and sulfate reducers. 

Sediment analyses 

Concentration of volatile n-alkanes (C1 to C6) and their carbon isotopic signature 

Dissolved volatile hydrocarbons (C1-C6) in the sediment were determined from 

subsamples of sediment core sections by using a headspace technique. Two ml of 

sediment and 5 ml of 2.5% (w/w) NaOH solution were equilibrated in a septum-sealed 

13 ml headspace glass vial at room temperature (Sommer et al., 2009). For the analyses 
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of volatile hydrocarbons in the original crude oil, 2 ml of the oil and 5 ml of 2.5% (w/w) 

NaOH solution were equilibrated in a septum-sealed 13 ml headspace glass vial at room 

temperature. It should be noted, however, that we cannot completely exclude losses of 

volatiles from the original crude oil as it was analyzed after the SOFT experiment, during 

which it was kept stored at room temperature in its original sealed container. 

Hydrocarbon (C1-C6) composition of the headspace gas was then determined with a 

“Thermo Trace ultra” (Thermo Scientific) gas chromatograph equipped with flame 

ionization detector (carrier gas: helium 5.0; capillary column: RT Alumina Bond-KCl, 

column length: 50 m; column diameter: 0.53 µm). Precision of ±1-3% was achieved in 

comparison to standard hydrocarbon mixtures. Stable carbon isotope ratios of (C1) 

were measured by using a continuous flow GC combustion - Isotope Ratio Mass 

Spectrometer combination. Hydrocarbons were separated in a Thermo Trace GC (carrier 

gas: He; packed column: ShinCarbon, 1.5 m). The subsequent conversion of methane to 

carbon dioxide was conducted in a Ni/Pt combustion furnace at 1150°C. The 13C/12C-

ratios of the produced CO2 were determined by a Thermo MAT253 isotope ratio mass 

spectrometer. All isotope ratios are reported in the δ-notation with respect to Vienna 

Pee Dee Belemnite (VPDB). Analytical precision of the reported isotopic composition 

was ± 0.3 ‰. A detection limit of 10 ppmV methane (1ml syringe injection) had been 

achieved by using the movable capillary device “DIPcon®” for the reference CO2 inlet 

instead of the original fixed one of Thermo ScientificTM (Cordt, 2012). 

Higher n-alkanes (C10 to C40) 

Sub-samples from sediment core sections were collected in aluminum foil and frozen at -

20°C until analyses. Prior to extraction, the sediment samples were allowed to thaw at 

4°C. Samples were extracted with an Accelerated Solvent Extraction (Dionex ASE 150, 

Thermo Scientific) and measured in GC-MS (Shimadzu, GCMA-QP2010 with auto injector 

AOC-20i) for n-alkanes. Around 4g of sediment (mixed with inert diatomaceous earth) 

was extracted with dichloromethane and acetone (80:20) at 100°C with the ASE 

(Application note 338, Dionex). The extract was dried over sodium sulfate and was 

passed through a glass chromatographic column (Eydam, length 25 cm, inner diameter 1 

cm). The chromatographic column was filled with 1 g of silica gel (Roth, 230-400 µm 

mesh size, preheated at 450°C for 4 hours and activated with 8% v/w with deionized 

water) and contained silanized glass wool at the outlet end. The column was then 
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washed portion wise with 20 ml of n-hexane and the resulting extract was collected and 

dried in a conical flask. The conical flask was then washed with 2 ml of n-hexane and this 

final solution was measured with GC-MS (1:10 or 1:20 dilution depending on the 

sample). Before the extraction process, deuterated tetracosane (C24D50) was used as an 

internal standard in the extraction cell. 100 µL of 2000 ng µL -1 C24D50 was added to the 

extraction cell to achieve an end concentration of 20 ng µl-1 C24D50 in the final extract. A 

solution of 20 ng µl-1 C24D50 in n-hexane was measured separately to produce a 

reference peak area on the chromatogram. The ratio of the two chromatogram peak 

areas (sample extract and reference) of the internal standard was used to calculate the 

recovery of individual n-alkanes in our samples. The GC-MS had a capillary column (ZB-

1HT Inferno, length 30 m, thickness 0.25 µm, diameter 0.25 mm). Helium Alphagaz-

1(Air Liquide) was used as the carrier gas with a flow rate of 0.8 ml min-1. The samples 

were measured in scan mode with the mass-to-charge ratio (m/z) range of 43 to 85. The 

original crude oil was extracted in the same procedure by mixing it with inert 

diatomaceous earth prior extraction by ASE. To get a precision of the methodology, the 

original crude oil was extracted 4 times (from the first step of extraction to the final 

measurement step). A method precision range for each n-alkane in the original crude oil 

is provided in Appendix 5. Instrument precision for each n-alkane determined by 

repeated measurements of 1 ng µl-1 standard mix is provided in Appendix 5. 

Sediment Porosity and total C, N, S 

Porosity was determined by weighing the wet and freeze-dried weight of the sediment. 

Porosity was then calculated from the water content assuming a dry solid density of 2.63 

g cm-3. As the bulk volume of petroleum was not removed by the freeze-drying process, 

porosity values might appear lower than they actually were in samples that contained 

oil. Porosity samples were subsampled for analyses of total C, N and S and analyzed by 

CARLO ERBA Elemental Analyzer (NA 1500) (Steeb et al., 2014). Total organic carbon 

was then determined by the difference in carbon content after removing the carbonate 

carbon through acidification (addition of 0.25 N HCl). Measurements were done in 

duplicates. 

Sulfate reduction rates  
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Six µl of the carrier-free 35SO42- radio tracer (dissolved in water, 200 kBq, specific 

activity 37 TBq mmol−1) was injected into the replicate push cores in 1-cm depth 

intervals according to the whole-core injection method (Jørgensen, 1978). The injected 

push cores were incubated for 6.5 hours at 16°C. After the incubation period was over, 

bacterial activity was stopped by slicing the push core in 1 cm intervals and transferring 

each sediment layer into 50 ml plastic centrifuge tubes filled with 20 ml zinc acetate 

(20% w/w). Five controls were prepared by adding the tracer to killed samples. The 

vials were stored at -20°C until rate determination by the cold chromium distillation 

procedure according to (Kallmeyer et al., 2004). For the SOFT core, 3 to 4 ml sediment 

was taken every 2 cm vertically in 5 ml glass tubes and were immediately sealed with 

butyl rubber stoppers after sampling (Treude et al., 2005). The tubes were injected with 

6 µl carrier-free 35SO42- radiotracer (dissolved in water, 200 kBq, specific activity 37 TBq 

mmol−1) and incubated at 16°C for 12 hours. Four controls were prepared by adding 

tracer to killed samples. Incubation was ended in the same way as described for the 

initial cores. 

DAPI Staining: 

Sediment samples were fixed in 3% formaldehyde for three hours at 4°C, washed with 

1x PBS and stored in ethanol-PBS (1:1) at -20°C. Samples were diluted, four times 

ultrasonicated on ice at 20% intensity, 20 cycles, 30 seconds (Bandelin Sonopuls 

HD200). An aliquot was filtered on a 0.22 µm pore size polycarbonate filter. Filter 

sections were embedded in Citifluor:Vectashield (4:1) mounting medium containing 

50µg ml-1 4',6'-diamidino-2-phylindole (DAPI). Microscopy was done with a Nikon 

eclipse 50i epifluorescence microscope. 

Sediment analyses: Enrichment culturing 

Anaerobic incubations were set up in an anaerobic chamber to determine methanogenic 

rates and the potential of indigenous microorganisms to degrade selected hydrocarbons. 

One g of sediment was transferred into autoclaved 50-ml glass bottles containing 20 ml 

of sulfate-free seawater medium (Widdel and Bak, 1992). The salinity of the medium 

was adapted to the respective original seawater conditions (12 psu) by adding varying 

amounts of NaCl (Merck, CAS-No: 7647-14-5). The glass vials were sealed with sterile 

butyl rubber stoppers and aluminum crimp caps. All tubes were flushed with N2 to 
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remove traces of H2 from the anaerobic chamber. Zero and 20 mM sulfate were added to 

the methanogenic microcosms and sulfate-reducing microcosms, respectively. Cultures 

were amended with the single substrates n-hexadecane, ethylbenzene (both 0.1 % v/v), 

toluene or 2-methylnaphthalene (0.5 mg of each), to investigate potential methane 

production rates related to the biodegradation of selected hydrocarbons . Controls 

without any added carbon source were incubated in parallel. Replicate cultures with 2-

bromoethanesulfonate (BES; 10 mM), a specific inhibitor for methanogenic 

microorganisms (Scholten et al., 2000) were prepared to account for possible non-

microbial methane emissions from the water or sediment samples. In sulfate-reducing 

microcosms, sodium azide (NaN3, 50 mM), a strong microbial toxin, was used to prepare 

metabolically inactive controls. All microcosms were incubated at 30°C in the dark and 

monthly sampled to assess methane and CO2 in the headspace as well as sulfide 

formation in the medium. Methane and CO2 production rates were calculated by linear 

regression of each gas increased with incubation time and expressed in µmol day-1 gDW-

1 (dry weight) of sediment (Krüger et al., 2001). Methane and CO2 concentrations from 

microcosms headspace were analyzed using a methanizer-equipped gas chromatograph 

with flame ionization detector (GC-FID) fitted with a 6´ Hayesep D column (SRI 8610C, 

SRI Instruments, USA) running isothermally at 60°C, after reduction of CO2 to methane. 
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Appendix for Chapter 4 

 

 

Appendix 1. Distribution of petroleum in the SOFT core during the vertical migration. The 
petroleum has distributed evenly throughout the sediment section but also channelized between 
the wall of the coreliner and sediment in parts. 

 

 

Appendix 2. Individual parts of the SOFT system. A) Rubber stopper with 2 integrated steel 
channels B) Upper cap with 3 small holes to guide tubing for aeration and seawater 
inflow/outflow C) Iso-versinic tubing D) Assembly of individual parts with the core liner.  
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Appendix 3. Amount of n-alkanes in the original North Sea petroleum used in the SOFT system. 
The extraction process of petroleum was repeated five times to determine the analytical 
precision of individual n-alkanes. The precision is represented by the standard deviation. 
(Values are mean, ±𝐒𝐃, 𝐧 = 𝟓)  
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Appendix 4. Technical specification of the original SLOT (methane seepage simulation) and the 
modified SOFT (oil seepage simulation) system (n.a = not applied). 

Specification SLOT 

(Steeb et al. 2014) 

SOFT 

(this study) 

Methane supply from 

below 

via advection n.a 

Crude oil supply from 

below 

n.a via advection 

Sulfate supply from top via diffusion 

Oxygen supply from top n.a. via diffusion 

(supplied by air pump) 

Seawater medium 

delivered from top 

Anoxic sulfate-rich 

artificial seawater medium 

(Widdel & Bak, 1992), 

salinity adapted to the 

respective environment 

Oxic seawater prepared from sea salt 

(Sigma Aldrich), salinity 13 ppt 

Seepage medium delivered 

from bottom 

Anoxic, sulfate-free 
artificial seawater medium 
(Widdel & Bak, 1992), 
salinity adapted to 
respective environment 

n.a. 

Sediment core liners Polycarbonate core liners: gastight, total length 30 cm, inner diameter 6 

cm, outer diameter 6.8 cm 

Sampling holes in core 

liners 

3 vertical lines of 21 sampling holes (diameter 4 mm, distance between 

sampling holes 5.8 mm) sealed with residue-free silicon (Aquasil, 

Probau) 

Pore water sampling Rhizons 

Peristaltic pumps Medorex TL/10E, min/max pump volume 0.1/400 μL min-1 

Peristaltic pump tubes Santropen; autoclaveable, highflexible, very resistant; tubes inner 

diameter 0.5 mm, outer diameter 1.6 mm 

Connecting tubes  Iso-Versenic: autoclavable; very resistant; very low gas permeability ; 

inner diameter  1 mm; outer diameter 3 mm 

Bottom sealing PVC caps Rubber stoppers with 2 oil channels 

Top sealing PVC cap PVC ring covered with parafilm 
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Appendix 5. Precision of n-alkane analyzes. 

n-alkane Standard deviation [%] 
n=4 

(Method precision from 
extraction to measurement) 

Standard deviation [%] 
n=5 

(GC-MS precision for a 
standard mix of 1 ng/µL) 

 
n-Decane (C-10) 

n-Dodecane(C-12) 

n-Tetradecane(C-14) 

n-Hexadecane(C-16) 

n-Octadecane(C-18) 

n-Eicosane (C-20) 

n-Heneicosane (C-21) 

n-Docosane (C-22) 

n-Tetracosane (C-24) 

n-Hexacosane (C-26) 

n-Octacosane(C-28) 

n-Triacontane (C-30) 

n-Dotriacontane (C-32) 

n-Tetratriacontane (C-34) 
n-Hexatriacontane (C-36) 
n-Octatriacontane (C-38) 
n-tetracontane (C-40) 

 

 
38.9 

26.3 

29.9 

6.1 

3.2 

2.8 

2.8 

2.4 

2.5 

3.5 

3.5 

2.6 

3.6 

4.3 

4.3 
6.0 
n.a 

 2.2 

4.7 

6.1 

1.4 

1.4 

1.2 

1.3 

1.1 

1.1 

1.2 

1.1 

1.2 

1.3 

1.2 

1.4 
2.0 
3.8 
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Summary  

Anaerobic microbial hydrocarbon degradation is a major biogeochemical process at marine 

seeps. Here we studied the response of the microbial community to a petroleum seepage 

simulated for 190 days under close-to-in situ conditions in a sediment core from the 

Caspian Sea using a sediment-oil-flow-through (SOFT) system. Initial (t0) and SOFT 

communities shared 43% bacterial genus-level 16S rRNA-based operational taxonomic 

units (OTU0.945) but shared only 23% archaeal OTU0.945. The community differed 

significantly between sediment layers. In layers of highest sulfate reduction, 

Deltaproteobacteria were fourfold more abundant in SOFT than in initial sediment. Based 

on an increase in specific CARD-FISH cell numbers, several groups of sulfate-reducing 

bacteria were identified who are likely responsible for the observed decrease in aliphatic 

hydrocarbon concentration: clade SCA1 for propane and butane degradation, clade LCA2 

for mid- to long-chain alkane degradation, clade Cyhx for cycloalkanes, pentane and hexane 

degradation, Desulfobacula for toluene and benzene degradation and syntrophic 

methanogenic archaea of the genus Methanosarcina for long-chain alkane degradation. 

Sequencing of masD, a marker gene for alkane degradation encoding (1-methylalkyl) 

succinate synthase, revealed a low diversity in SOFT sediment with two abundant species-

level OTU0.96 supporting that the major part of anaerobic hydrocarbon degradation is 

mediated by few groups of microbes. 
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Introduction 

Crude oil mainly consists of aliphatic hydrocarbons (alkanes), naphthenes, aromatics, 

asphaltenes and other compounds in varying composition depending on where and how it 

was formed. A large and diverse number of microorganisms, including bacteria, archaea 

and fungi, have evolved the ability to utilize these hydrocarbons as sources of food and 

energy for growth under either oxic or anoxic conditions (Grossi et al., 2008; Heider and 

Schühle, 2013).  

Contaminations of an ecosystem with hydrocarbons as observed, e.g., after the Deepwater 

Horizon disaster in the Gulf of Mexico (Atlas and Hazen, 2011; Kimes et al., 2013; Kimes et 

al., 2014), have important consequences on the autochthonous microbial communities, 

which suffer drastic changes in structure and function. In the oxic water column the 

majority of oil is degraded by aerobic microbes, while oil from “natural spills” at 

hydrocarbon seeps is mainly degraded by anaerobic microbes living in benthic 

environments (Head et al., 2003; Jones et al., 2008). Using sulfate, nitrate, manganese or 

ferric iron as electron acceptors anaerobic enrichment cultures were established from 

marine seep sediments, oil reservoirs and petroleum polluted sites (e.g. Kniemeyer et al., 

2007; Weelink et al., 2009; Jaekel et al., 2012; Mbadinga et al., 2012; Bian et al., 2015) and 

several isolates have been obtained. Furthermore, hydrocarbon-degrading syntrophic 

enrichment cultures have been established under methanogenic conditions (for example, 

Zengler et al., 1999; Chang et al., 2006; Berdugo-Clavijo and Gieg, 2014; Embree et al., 

2014). Responsible strains can degrade only a narrow range of hydrocarbon sources and 

belong to the phyla Proteobacteria, Firmicutes within the domain Bacteria or to 

Euryarchaeota within the domain Archaea (Figure 1). A common way of alkane activation 

is its addition to the double bond of fumarate (fumarate addition), which is catalyzed by the 

glycyl radical enzyme 1-methyl alkyl succinate synthase (Mas; Grundmann et al., 2008) 

acronym: alkylsuccinate synthase (Ass; Callaghan et al., 2008). As such, genes encoding the 

catalytic subunits of Mas (masD) serve as potential biomarkers for alkane-degrading 

communities in anoxic hydrocarbon-impacted environments (Callaghan, 2013a, b).  



Chapter 5. Microbial community response to simulated petroleum seepage in Caspian Sea sediments 

73 
 

The fate of oil in the marine environment is subjected to microbial activity, thus altering the  

oil’s composition. The rate of microbial degradation depends on several environmental 

factors like nutrients, salinity, and availability of terminal electron  

 

 

Figure 1. Phylogenetic tree showing the affiliation of 16S rRNA sequences of cultured or enriched 
sulfate-reducing anaerobic hydrocarbon degraders to selected reference sequences of the domain 
Bacteria. Substrate usage of hydrocarbon degraders is given in parentheses. Hydrocarbon 
degraders detected in the 16S rRNA gene sequence dataset from SOFT core sediment (based on 
genus-level; >94.5% sequence similarity) have been printed in boldface type. The grey boxes show 
coverage of probes used for CARD-FISH. For quantified clades, i.e. SCA1, Desulfobacula and 
relatives, LCA2, and Cyhx, an increase of cell numbers by at least 2fold were detected in the zone of 
sulfate reduction. The bar represents 10% estimated sequence divergence. 
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acceptors, composition of crude oil, temperature and pressure (Atlas, 1981; Leahy and 

Colwell, 1990). Only few studies investigated anaerobic hydrocarbon degradation under 

close-to-in situ conditions and most of these studies have focused either on one or few 

selected hydrocarbons (Spormann and Widdel, 2000; Widdel et al., 2010; Mbadinga et al., 

2011). Thus, the aim of this study was to follow the response of the benthic microbial 

community on simulated oil seepage in a marine sediment core. In the accompanying  study 

by Mishra et al. (this issue) a sediment-oil-flow-through (SOFT) system was established 

that simulated oil seepage-like conditions. In this SOFT system, intact sediment cores are 

supplied with crude oil flow from below (simulating a seep situation) and artificial 

seawater with electron acceptors like sulfate and oxygen from above. Sediment cores from 

the Caspian Sea (Western Asia) were chosen for establishing the SOFT system. The Caspian 

Sea is the largest enclosed basin on Earth (ca. 380.000 km2, Dumont, 1998). In the past, the 

Caspian Sea was, as remnant of the Paratethys Sea, connected to oceans, but has become 

landlocked five million years ago. Thus, the Caspian Sea has unique natural conditions and 

rich natural resources, both biological and mineral (Kosarev, 2005). Due to the large influx 

of freshwater by numerous rivers that drain into the Caspian Sea, the salinity is only about 

one-third of that of seawater (1.3%, Millero and Chetirkin, 1980), making it a lacustrine 

brackish water body (Leroy et al., 2007). The Caspian Sea harbors significant oil and gas 

reserves (Zonn, 2005), so that sediments used in this study has got some history of 

(nearby) hydrocarbon seepage. However, concentrations of alkanes in initial sediments 

were below the detection limit of <0.1 ng ml-1 (Mishra et al., this issue).  

Here we report the microbial 16S rRNA gene diversity in Caspian Sea sediments sampled at 

t0 (representing the initial conditions) and after 190 days of stimulated crude oil seepage in 

the SOFT core by 454 pyrosequencing. Furthermore, the anaerobic alkane -degrading 

community was analyzed based on MasD diversity. We hypothesize that specific taxa 

respond specifically to simulated crude oil seepage by an increase of their cell numbers 

resulting in a change of community composition. We further hypothesize that this specific 

cell increase is vertically structured according to sequential crude oil degradation. To 

address these hypotheses specific cell numbers of selected hydrocarbon-degrading taxa in 

SOFT core versus initial core sediments were determined by CARD -FISH, and molecular 
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data obtained in this study were correlated with the biogeochemical and crude oil 

degradation data obtained by Mishra et al. (this issue). 

 

Results and discussion 

Oil seepage was simulated in a sediment core from the Caspian Sea using a sediment-oil-

flow-through (SOFT) system (for details see Mishra et al., this issue). Crude oil was pumped 

at a constant rate through the core from the bottom to top, while artificial oxic seawater 

diffused into the sediment from the ventilated supernatant. Methanogenesis and sulfate 

reduction were identified as important processes in the anaerobic degradation of 

hydrocarbons during petroleum seepage in Caspian Sea sediments (Mishra et al. this issue).  

 

Sequence dataset specification, microbial richness and evenness. 

We obtained 146,181 bacterial and 393,789 archaeal raw 16S rRNA gene sequences from 

initial and SOFT sediments. After strict quality trimming about 40% of the raw reads were 

left for analysis (Table 1). In total, 2478 bacterial and 153 archaeal genus-level operational 

taxonomic units at 94.5% sequence identity (OTU0.945) were detected in the sediment t0 

(herein after referred to as “initial sediment”) and 2558 bacterial and 241 archaeal OTU0.945 

in SOFT sediment. The bacterial dataset contained 4.1% absolute single sequence OTU 

(SSOabs; OTU0.945 that occurred only once in the whole dataset) and 10.6% relative single 

sequence OTU (SSOrel; OTU0.945 that occurred only once in at least one sample but are more 

frequent in other samples) and the archaeal dataset contained 7% SSOabs and 19.1% SSOrel. 

Chao 1 bacterial genus-level richness estimates based on standardized datasets were 

similar for initial and SOFT sediments and ranged between 396 and 532 OTU0.945 (Table 1). 

Archaeal richness estimates were one order of magnitude lower and ranged between 30 

and 35 OTU0.945 in initial sediments and between 57 and 81 OTU0.945 in SOFT sediments. 

Coverage was >94.6% (Bacteria) and >99.6% (Archaea) for all layers in both cores and 

rarefaction curves nearly reaching saturation indicated sufficient sequencing effort (Figure 

S1). The observed bacterial richness on genus-level fits to that reported before in other 

studies of benthic habitats for species-level which ranged between ca. 300 OTU0.97 at 
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hydrothermal vents to ca. 6500 bacterial OTU0.97 at the deep-sea surface and ca. 1500 

archaeal OTU0.97 in coastal sediments (Ruff et al., 2015). With an inverse Simpson index 

between 4.3 and 6.6, archaeal diversity was low in initial and SOFT sediments (Table 1). 

Across all layers, archaeal diversity was lower than bacterial diversity. In initial sediments 

inverse Simpson for Bacteria ranged between 40.1 and 82.1 and was highest in the two 

uppermost layers.  In SOFT sediments inverse Simpson ranged between 42.9 and 59.9.  

 

Microbial community similarity between initial and SOFT sediments.  

The uppermost layer of the SOFT core (0-1 cm depth) was excluded from the similarity 

analysis due to the influence of an accumulating oil slick above and oxygen penetration 

(Mishra et al., this issue) into this layer.  

Pairwise comparison of initial and SOFT sediments resulted in 43% shared bacterial 

OTU0.945 but only 23% shared archaeal OTU0.945 (Table S1). Communities were as similar to 

each other within the core as between identical layers of the two cores: On average, 55% 

bacterial and 59% archaeal OTU0.945 were shared within a core versus 51-56% bacterial 

and 59% archaeal OTU0.945 shared between identical layers (Table S2). 

Similarity of bacterial (Figure 2A, B; 11 samples) and archaeal (Figure 2C, D; 10 samples) 

communities was visualized by nonmetric multidimensional scaling (NMDS). Bacterial 

dissimilarity (Bray-Curtis) of samples is supported by an R value of 0.49 (p < 0.001). 

Archaeal dissimilarity (Bray-Curtis) of samples is supported by an R value of 0.57 (p < 

0.001). The bacterial and archaeal community differed significantly between different 

sediment layers as confirmed by analysis of similarity (ANOSIM, Figure 2A, C; Bacteria: R= 

0.46-0.73, p<0.001; Archaea: R=0.75; p<0.001). Between the cores, community was only 

significantly different for Archaea (R= 0.73; p<0.001) but not for Bacteria (R=0.31, p = 0.05; 

Figure 2B, D). 

Fitting of environmental variables found significant correlations for methane (p= 0.003), 

suggesting that methane likely influenced the observed pattern of archaeal taxonomic 

clustering, while sulfate reduction rates (p<0.001) and sulfate concentration (p = 0.07) 

likely influenced bacterial taxonomic clustering.  
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Bacterial taxa in initial and SOFT sediments 

On phylum-level, the composition of the bacterial community was similar in initial and 

SOFT sediments (Figure 3A, B). Proteobacteria dominated throughout the cores accounting 

for 56% and 50% of bacterial 16S rRNA gene sequences in initial and SOFT sediments, 

respectively. Planctomycetes, Actinobacteria, and Chloroflexi (5% to 7%  

 

Figure 2. Similarity of bacterial (A, B) and archaeal (C, D) communities visualized by non-metric 
multidimensional scaling (NMDS) of Bray-Curtis dissimilarity matrices based on OTU0.945 relative 
abundance data with environmental variables fitted as vectors. Grey dots represent initial sediment 
subsamples and black dots represent SOFT sediment subsamples. The size of the dots reflects the 
evenness of the subsamples (inverse Simpson index). Defined subgroups are depicted as colored 
polygons. Dataset for SOFT core layer 0.5 cm depth was excluded from the analysis because this 
layer became oxic and was influenced by an oil slick forming on top of the core during the 
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experiment. Significance levels are shown after the tested parameters methane, sulfate, and sulfate 
reduction rates (**: p< 0.01; *: p< 0.1). SRR, sulfate reduction rates. 

 

each) were the next sequence-abundant phyla. One-third (initial sediment) and one-half 

(SOFT) of the proteobacterial sequences belonged to the class Deltaproteobacteria (Figure 

S2A, B) while almost one-half (initial sediment) and one-third (SOFT) belonged to 

Gammaproteobacteria. In comparison, previous studies investigating the microbial 

community in natural Caspian Sea sediments reported similar taxa with Proteobacteria 

being most abundant (33% of reads on average), followed by Planctomycetes (14%) and 

Chloroflexi (12%) (Mahmoudi et al., 2015).  

The major part of gammaproteobacterial sequences in SOFT and initial sediment affiliated 

with JTB255 (29% and 30%), recently described as ubiquitous chemolithoautotrophic key 

players potentially involved in sulfur oxidation in marine sediments (Dyksma et al., in 

press). A remarkable increase of Alphaproteobacteria was observed after oil-flow-through 

in the uppermost layer of SOFT sediments at 0.5 cm depth (initial sediments: 6%; SOFT: 

12%). The alphaproteobacterial genera Novosphingobium, Sphingomonas, Thalassospira, 

and Kordiimonas, that were described to aerobically degrade aromatic hydrocarbons (Kim 

and Kwon, 2010), have been found in the SOFT dataset retrieved from 0.5 cm depth. As the 

top layer in the SOFT core was oxic (Mishra et al., this issue) and was covered by an oil 

slick, the detection of sequences from known hydrocarbon degraders suggested the 

development of an aerobic hydrocarbon-degrading bacterial community. Sequences related 

to known gammaproteobacterial aerobic hydrocarbon degraders (Kleindienst et al., 2015) 

have also been detected in this layer including Cycloclasticus, Marinobacter, Alcanivorax, 

and Thalassolituus. In particular, the relative abundance of sequences assigned to 

Cycloclasticus increased remarkably by a factor of 10 from 0.1% in initial sediments to 

1.0% in the oxic SOFT layer. Cycloclasticus spp. had been described as globally relevant 

degraders of aromatic hydrocarbons such as naphthalene, phenanthrene, anthracene, and 

toluene (Dyksterhouse et al., 1995). For example, they became enriched in the Deepwater 

Horizon hydrocarbon plume in the water column (Redmond and Valentine, 2012; Dubinsky 

et al., 2013). 
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Deltaproteobacteria were analyzed in greater detail as most known anaerobic hydrocarbon 

degraders belong to this group (Figure 1). An increase of relative sequence abundance of 

Deltaproteobacteria was observed in the anoxic layers of the SOFT core between 2 and 8 

cm depth (17-25% in initial versus 23-35% in SOFT sediment). Of these, more than one-

half could be further assigned to the order Desulfobacterales accounting for a maximum of 

20-22% of total bacterial sequences between 4 cm and 12 cm depth (Figure S2). Within  

Desulfobacterales, the uncultured Sva0081-group, which was first described in clone 

libraries from Svalbard sediments (Ravenschlag et al., 1999) and includes sulfate-reducing 

endosymbionts of the gutless marine oligochaete Olavius sp., was the most sequence-

abundant group with 2.3 to 5.7% of total sequences (Table 2). Relative abundance did not 

differ remarkably between initial and SOFT sediments supporting current knowledge, that 

members of Sva0081 are a ubiquitous and highly abundant member of SRB communities in 

diverse benthic habitats (Mußmann et al., 2015). A second sequence-abundant group was 

the uncultivated SEEP1d with up to 3.4% of total bacterial sequences between 10 and 16 

cm in both, initial and SOFT sediments. SEEP1d was repeatedly found at marine seep sites 

but no function has yet been assigned (Knittel et al., 2003; Schreiber et al., 2010). 

Many known groups of hydrocarbon-degrading SRB were found in our dataset (Figure 1), 

some of which showed an increase of relative sequence abundance after oil-flow-through 

in the zone of highest sulfate reduction at 2-8 cm SOFT depth; other did not (Table S3). 

Most sequence-abundant and at the same time strongly increased were toluene-degrading 

Desulfobacula spp. with up to 8.1% of total bacterial sequences compared to 1.7% in initial 

sediments. Less sequence-abundant but increased in SOFT sediments were long-chain 

alkane-degrading SRB of LCA2 (Kleindienst et al., 2014) with 0.2% vs. 1.9%, clade Cyhx 

(Jaekel et al., 2015, 0.2% vs. 0.6%), C2-C4 alkane degraders (Adams et al., 2013, 0.1% vs. 

1.1%), alkane or aromatics-degrading Desulfosarcina spp. (0.6% vs. 1.5%), and s2551group 

(0.5% vs. 1.1%), reported as oil-degrading bacteria in an oil-reservoir model column (Myhr 

et al., 2002). Relative sequences abundances of short-chain alkane-degrading SCA1, which 

includes the only isolated n-butane-degrading strain BuS5 (Kniemeyer et al., 2007), did not 

increase after oil-flow-through and were constantly low with 0.3 – 0.8% of total bacterial 

sequences in both, initial and SOFT sediments. No remarkable change (0.2 vs 0.3%) has 

also been observed for Cd. Desulfococcus oleovorans Hxd3 group (Aeckersberg et al., 
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1991), LCA1 (0.1%), Desulfatiglans-group (1.1 to 2.1%), and SB-29 (around 0.5%). 

Sequences related to known hydrocarbon-degraders within the Firmicutes, i.e. 

Propane60GuB (Kniemeyer et al., 2007) and Desulfotomaculum sp. strain Ox39 (Morasch et 

al., 2004), were not retrieved. However, Peptococcaceae, in particular autotrophic 

hydrogen-utilizing SRB of the genus  Desulfosporosinus spp., increased at 15 cm depth in 

SOFT sediments (initial sediments: 1.1%; SOFT: 4.8% of total bacterial sequences).  

 

Archaeal taxa in initial and SOFT sediments 

On phylum-level, significant differences were observed between the archaeal community in 

SOFT and initial sediments (Figure 3C, D). In initial sediments at 7 and 9 cm depth, most 

sequence-abundant phylum was Thaumarchaeota (on average 30% of total archaeal 

sequences at 7-15 cm depth with a maximum of 64% at 7 cm), of which all currently known 

species are chemolithoautotrophic ammonium-oxidizers (Könneke et al., 2014). Below, at 

11 cm to 15 cm depth, sequences related to euryarchaeotal Marine Benthic Group D and 

DHVEG-1 (20% of total archaeal sequences) and Thermoplasmata CCA47 (13%), a group of 

uncultivated euryarchaeotal sequences isolated from an anoxic sediment of a sub -saline 

shallow lake (Laguna de Carrizo, Central Spain, Ferrer  et al., 2011), were most abundant. In 

the SOFT core, Thaumarchaeota had only low sequence frequencies (0.6% to 2.5%). 

Dominant groups were DHVEG, Thermoplasmata ASC21 (9%) a group of uncultivated 

Thermoplasmatales isolated from a hot spring in the Lower Culex region of the Lower 

Geyser Basin, Yellowstone National Park (Saw et al., 2015), and Deep Sea Euryarchaeotic 

Group (DSEG; 7% in 14–16 cm). High relative sequence numbers of Methanosarcinales 

were detected at 7 cm (7% of total archaeal sequences) and at 9 cm (38%) depth in the 

SOFT core whereas in other layers and in initial sediments they were nearly absent. More 

than 99% of the Methanosarcinales sequences affiliated with the genus Methanosarcina. 

The closest relatives were M. semesiae and M. lacustris, with a 16S rRNA gene similarity of 

>98%. Furthermore, very few sequences (<<1% of total archaeal sequences) affiliated with 

other known methanogens such as Methanolobus and Methanococcides 

(Methanosarcinaceae), Methanosaetaceae, Methanomicrobiaceae, Methanocellaceae, or 

Methermicoccaceae were detected in SOFT sediments (Table S4). Methanotrophs of the 



Chapter 5. Microbial community response to simulated petroleum seepage in Caspian Sea sediments 

81 
 

ANME clades (ANME-1, ANME-2, ANME-3) were only sporadically detected. In comparison, 

previous studies of the microbial community in Caspian Sea sediments identified 

Thaumarchaeota and Parvarchaeota as dominant in surface layers while Marine Benthic 

Group B (Lokiarchaeota) dominated the deeper layers (Mahmoudi et al., 2015).  

 

Figure 3. Microbial community composition in Caspian Sea sediments before and after simulated 
oil seapage. Relative abundance of (A, B) bacterial taxa (based on 454-pyrosequencing of 16S rRNA 
genes) and (C, D) archaeal taxa (based on IonTorrent-sequencing of 16S rRNA gene) in (A, C) initial 
core and (B, D) SOFT core sediments. Depth profiles of methane (triangles), sulfate (dots) and 
sulfate reduction rates (rectangles) were taken from Mishra et al. (this issue). 
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Response of hydrocarbon-degrading SRB to simulated crude-oil seepage. 

Based on identified changes in relative sequence abundance, we selected several groups of 

SRB as target for CARD-FISH and cell counting (Figure 4). 

 

Figure 4. Cell numbers of potential hydrocarbon degraders in initial and SOFT Caspian Sea 
sediments Vertical profiles showing specific cell numbers in initial (white dots) and SOFT (black 
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circles) core sediments as detected by CARD-FISH with (A) probe Delta495abc for 
Deltaproteobcateria, (B) probe DSB985 for Desulfobacula spp., Desulfotignum spp. and 
Desulfobacter spp., (C) probe LCA2-63 for clade LCA2,(D) probe SCA1-212a/b for clade SCA1, (E) 
probes Cyhx-EdB_152/152b for clade Cyhx, and (F) probe MS1414 for Methanosarcina spp., 
Methanococcoides spp., Methanolobus spp. and Methanohalophilus spp. Sulfate reduction rates (A-E) 
and methane concentration (F) for SOFT core are shown by grey area (data taken from Mishra et al., 
this issue). Bar = 5 µm. 

Deltaproteobacteria were most abundant between 0 and 4 cm depth (Figure 4A). In these 

layers, deltaproteobacterial cell numbers increased by a factor of 4 compared with 

numbers in initial sediment layers and accounted for up to 3.2 x 10 8 cells ml-1 SOFT 

sediment (24-28% of total cells) and up to 8.6 x 107 cells ml-1 initial sediment (9-17%). The 

peak of Deltaproteobacteria in SOFT sediment coincided with the strong decrease of sulfate 

concentration, highest sulfate reduction rates and the decrease of aliphatic hydrocarbon 

concentrations (see Mishra et al., this issue) indicating a response of specific hydrocarbon-

degrading Deltaproteobacteria. Major decrease of gaseous alkanes was observed above 7 

cm depth (Mishra et al., this issue). Mid- and long-chain alkanes (C12 – C30) decreased by 

about 50% above 14 cm depth, further 25% above 7 cm and remained relatively constant 

until top of the core.  

Using probe DSB985, we targeted the either toluene- or benzene-degrading SRB within 

Desulfobacula, Desulfotignum and Desulfobacterium. Members of this group were found in 

high numbers in the SOFT core accounting for up to 6.4 x 107 cells ml-1 sediment (7% of 

total cells, Figure 4B). Cell numbers peaked at 3 cm depth and strongly decreased below. In 

initial sediments, Desulfobacula cell numbers were almost an order of magnitude lower 

accounting for only 1% of total cells. Although degradation of aromatic compounds had not 

been followed during the experiment, we assume a standard composition of the light oil 

used for flow-through of about 30% aromatics, 0-10% asphalthenes, and major part being 

alkanes. Highest cell numbers were found within the zone of sulfate reduction thus 

indicating that this group is very likely the main consumer of the aromatics in the crude oil.  

The yet uncultivated LCA2-group was targeted by probe LCA2-63. As Desulfobacula, LCA2 

cell numbers strongly increased in SOFT sediments at 3 cm depth by an order of magnitude 

compared with numbers in initial sediment to 5.5 x 107 cells ml-1 sediment corresponding 

to 6% of total cells (Figure 4C). In initial sediments, LCA2 cell numbers accounted for 1-2% 

of total cells. SRB of LCA2 had been identified by stable isotope-probing as key players for 
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long-chain alkane-degradation at marine seeps (Kleindienst et al., 2014). The incubation 

was done with n-dodecane as a representative substrate for long-chain alkanes. SRB of 

LCA2 are likely primary responsible for the consumption of long-chain alkanes in the 2-6 

cm depth layers in SOFT core. In these layers, concentrations of C12-C26 alkanes dropped to 

about 20-25% (Mishra et al., this issue).  

The short-chain alkane-degrading group SCA1 was targeted by probes SCA1-212a and 

SCA1-212b. SCA1 cell numbers were comparably low for all initial and SOFT sediment 

layers except for 0-3 cm depth in which SCA1 cells were in the SOFT sediment 3-5fold 

higher than in initial sediments with 2-3 x 107 cells ml-1 sediment corresponding to 2% of 

total cells (Figure 4D). Isolated or enriched members of SCA, for example strain BuS5, 

Butane12_GMe, propane12_GMe, and Butane12_HR, use propane or butane as carbon 

source. Available propane and butane was completely consumed, likely by SCA1 and maybe 

others (for example, the C2-C4 alkane degrading group; Adams et al., 2013), coinciding with 

the highest sulfate reduction activity measured (Figure 4).  

Clade Cyhx was targeted by a mixtures of probe Cyhx28_EdB_152 (Jaekel et al., 2015) and 

probe Cyhx28_EdB_152b that has been designed in this study to adapt it to our sequences. 

In the SOFT core zone of sulfate reduction, representatives of this group were detected by 

CARD-FISH in numbers of up to 0.9 x 107 cells ml-1 sediment (1% of total cells, Figure 4E). 

In initial sediments, however, members of clade Cyhx were close to detection limit of 

0.5% of total cells in all layers. SRB of this clade were shown to grow on cyclohexane, but 

also able to use other cyclic alkanes as well as n-pentane and n-hexane (Jaekel et al., 2015).  

 

Methanogenic hydrocarbon degradation as response to simulated oil seepage 

Methanogenesis was identified as important process in the anaerobic degradation of 

hydrocarbons during simulated oil seepage in Caspian Sea sediments. The δ13C signal of 

produced methane showed a decrease from -33.7‰ to -49.5‰ after 190 days of oil 

seepage indicating biogenic methane formation (Mishra et al., this issue). Furthermore, the 

high methane concentrations in the deep SOFT core layers coincided with a decrease in 

higher hydrocarbons also supporting methanogenic hydrocarbon degradation. The 

mechanism driving alkane (mainly hexane) or aromatics degradation under methanogenic 
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condition is not elucidated yet. It supposedly requires the interaction of syntrophic 

bacteria, such as members of the family Syntrophaceae (Syntrophus spp., Smithella spp.) or 

of the order Clostridiales (Desulfotomaculum spp.), with methanogenic archaea (Zengler et 

al., 1999; Siddique et al., 2012). For example, Methanosaeta spp. and Methanoculleus spp. 

have been repeatedly detected in methanogenic hydrocarbon-degrading enrichment 

cultures (Siddique et al., 2006; Siddique et al., 2011; Cheng et al., 2013). For in situ 

identification and quantification of methanogens in the SOFT core methanogenic zone we 

applied CARD-FISH using probe MS1414 targeting Methanosarcina, Methanococcoides, 

Methanohalophilus and Methanolobus. Cell numbers were highest with 5.7 x 106 cells ml-1 

(2% of total cells) at the depth of 9 cm (Figure 4F) where maximum methane increase was 

observed. Although hydrocarbon-degradation by Methanosarcina spp., which are the 

dominant methanogens in this study, has not yet been reported yet, and although detected 

Methanosarcina cells were not physically attached to any other cell we hypothesize a 

contribution to observed methanogenic hydrocarbon-degradation due to their specific 

increase in cell numbers in the methanogenic zone. The well-known bacterial partners such 

as Syntrophus or Desulfotomaculum were absent from the dataset. Only rarely, Smithella 

sequences (n=2 at 13 cm depth) were found. Syntrophic growth of Methanosarcina has 

been described for an association with Geobacter spp. and depends on interspecies electron 

transfer (Rotaru et al., 2014), thus also allowing the speculation about hydrocarbon-

degradation with a yet unknown bacterial partner. 

 

Anaerobic alkane-degrading community based on masD gene diversity 

To assess the microbial community activating alkanes by fumarate addition, masD gene 

libraries were constructed for SOFT core layers showing the highest sulfate reduction 

activity (0 – 8 cm; Mishra et al., this issue). Benzylsuccinate synthases (Bss) that activate 

aromatic compounds are not targeted by the used primer pair. A total of 16 species -level 

OTU0.96 (based on 96% amino-acid identity, Stagars et al., in press) were observed after 

sequencing of 717 masD (Table 1) from the four selected SOFT core layers. From initial 

sediments, masD could not be amplified. With inverse Simpson values of close to 1 (1.0 to 

2.3), MasD-carrying community was extremely low. Library coverage was >96.8% for all 
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samples. The MasD-community diversity in Caspian Sea SOFT core sediments was even 

lower than that recently reported by Stagars et al. (in press) who found inverse Simpson 

values of 3 to 9 for 12 other hydrocarbon seep sites.  

The major part of sequences (81%) fell into cluster Ic (Figure 5). They were most similar to 

environmental clones from oil reservoirs and crude oil polluted sediments (Bian et al., 

2015) or from enrichments with n-butane (Kleindienst et al., 2014). Cluster Ic comprises 

Desulfoglaeba alkanexedens that covers the largest yet known substrate range of alkane 

degraders, using n-alkanes of chain-length C6 to C12 (Davidova and Suflita, 2005). 

Another 17% of MasD sequences fell into cluster IIIa. This cluster also contains the 

propane- and butane-degrading strain BuS5, however, the most abundant OTU0.96 was only 

distantly related with 57% sequence identity. Most likely this is caused by substantial 

primer mispairing: The forward primers had 11 (7757f1-f2, 22mer) and 13 (7766f, 23mer) 

mismatches, respectively, to the BuS5-masD sequence retrieved from the genome (JGI gene 

ID 2513990058).  None of the obtained MasD sequences were closely associated with the 

betaproteobacterial Azoarcus sp. and Aromatoleum sp.  

Two MasD OTU0.96, i.e. OTU1 and OTU2, contained 97% (571 sequences and 122 

sequences) of all retrieved MasD sequences pointing to the presence of few abundant taxa, 

which are responsible for degradation of the major part o f alkanes in Caspian Sea SOFT 

sediments. This supports the recent findings by Stagars et al. (in press) who detected a 

total of 420 MasD-carrying species in 12 different hydrocarbon seep environments of 

which only few were abundant, cosmopolitan alkane degraders but many were specialized 

taxa across many different environments. It also matches our findings that short-chain 

alkane-degrading group SCA1 and long-chain alkane-degrading group LCA2 were the only 

taxa identified which responded to simulated oil seepage by an increase of their cell 

numbers suggesting that we likely have identified the key alkane-degrading SRB in Caspian 

Sea sediments.  
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Figure 5: Phylogenetic tree showing the affiliation of retrieved SOFT core amino acid deduced 
MasD OTU0.96 (printed in bold) to selected reference sequences. The tree was calculated using the 
maximum likelihood algorithm (PhyML) considering 126 amino acid positions. Pyruvate formate 
lyase (PFL) was used as outgroup. OTU abundance and sediment depth are indicated in parenthesis. 
The scale bar gives 10% estimated sequence divergence.  
Abbreviations: Ass = alkylsuccinate synthase, Mas = 1-methyl alkyl succinate synthase, Bss = 
benzylsuccinate synthase, Nms = napthyl-methylsuccinate synthase. Panel A: MasD community 
structure in different sediment layers. The size of each dot indicates the percentage of identified 
MasD sequences within particular taxonomic groups (according to Stagars et al., in press). Panel B: 
legend for bootstrap support (1000 bootstrap replicates and blosum62) and for pie charts shown 
next to the two most abundant OTU0.96. 
 

Conclusion 

By molecular comparison of microbial communities in Caspian Sea sediments before and 

after controlled oil seepage, specific SRB and methanogenic archaea were identified who 

are likely responsible for the observed decrease in aliphatic hydrocarbon concentration. 

Although no aliphatic hydrocarbons could be detected in initial Caspian Sea sediment, this 

study demonstrates the intrinsic potential for alkane degradation in the microbial 

community most likely due to a history of nearby hydrocarbon seepage. This study further 

shows that identified SRB, such as SCA1, LCA2, Desulfobacula, and cycloalkane-degraders, 

are responsible for hydrocarbon degradation under close-to-in situ conditions. For some 
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groups cultivation has already been successful (BuS5, (Kniemeyer et al., 2007); 

Desulfobacula (Rabus et al., 1993; Heider et al., 1998), and others have been enriched 

(clade Cyhx). For the LCA2 group isolation should be aimed for to get a deeper 

understanding of the ecophysiology of this clade of hydrocarbon-degrading bacteria.  

Similar to aerobic hydrocarbon degradation in the water column, for example after the 

Deepwater Horizon accident, where gammaproteobacterial Oceaniserpentilla, Colwellia or 

Cycloclasticus dominated in the hydrocarbon plume (Kleindienst et al., 2015), the major 

part of anaerobic hydrocarbon degradation is mediated by few groups of microbes 

specialized on the degradation of a specific hydrocarbon type: SCA1 is likely responsible for 

propane and butane degradation (maybe together with the C2-C4 short-chain alkane-

degrading group described by Adams et al., 2013), LCA2 is responsible for mid- to long-

chain alkane degradation, clade Cyhx for cycloalkanes, pentane and hexane, Desulfobacula 

and relatives are responsible for toluene and benzene degradation and archaea of the 

genus Methanosarcina might be responsible for syntrophic methanogenic long-chain 

alkane degradation.  

 

Experimental procedures 

Sampling site and SOFT system  

The study site Baku Bay is located in the SW Caspian Sea near Baku, Azerbaijan (N 39 

59.548, E 49 28.775, Figure S3). It is one of the most polluted areas in the Caspian Sea 

(Zonn, 2005). Several oil fields are located in this area, causing heavy pollution by 

extraction of oil and gas reserves in large scales, influencing the microbial community 

composition (Hassanshahian et al., 2010; Hassanshahian et al., 2012). Sediment cores (30 

cm long, 6 cm in diameter) were collected from a coastal area (water depth ~ 60 cm) in 

November 2012. After collection, cores were directly sealed and stored at 10°C in the dark 

for 3 months until one core was processed as reference for t0 (“initial sediment”). 

Afterwards, all cores were stored at 0°C for further 2.5 months until the start of the SOFT 

system (Mishra et al., this issue). Storage at 0°C slows down any kind of microbial activity 

and therefore, we expect no change in biogeochemistry. Sediments were mostly sandy with 

porosity around 0.4.  
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Light crude oil for the SOFT experiment was provided by Dea Deutsche Erdoel AG and 

originated from the North Sea, Mittelplatte (sampled in February 2013). The experiment 

was stopped after incubation for 190 days at 16°C. Cores were sliced in one or two 

centimeter thick slices. DNA was extracted from initial sediment at t0 and from SOFT core. 

Experimental set up was too complicate for replication, yet we consider adjacent layers as 

technical replicates. More details on the sampling procedure, the SOFT system setup, as 

well as sulfate, methane, and sulfate reduction determination are provided in Mishr a et al. 

(this issue). 

 

DNA extraction 

DNA was extracted from 1 g sediment that had been frozen immediately after sampling 

with the UltraClean soil kit (MoBio) according to the manufacturer's protocol for maximum 

yields. Following modifications were implemented: Cell lysis was performed at the 

beginning by adding 0.02 mg ml-1 proteinase K (Merck, Darmstadt, Germany) to the sample 

and incubating for 50 min at 37 °C with moderate shaking. Besides that, a second round of 

extraction by a repetitive beat beating step was done. Therefore, the processed sediments 

were added to the bead-containing tubes and mixed with 60 μl of solution 1 and 200 μl of 

the MoBio inhibitor removal solution (IRS). The manufacturer's protocol was then followed 

and ended by a final elution with 50 µl EB Buffer. 

 

Sequencing of 16S rRNA genes. 

Bacterial 16S rRNA genes were amplified with the primer pair Bakt_341F (5’ - 

CCTACGGGNGGCWGCAG- 3’) / Bakt_785R (5’- GACTACHVGGGTATCTAATCC- 3’) 

(Herlemann et al., 2011). Primers were barcoded and extended with a SfiI restriction site at 

the 5’ end for ligation with the 454-adapters. For each sample, 8 replicate PCR reactions 

(20 μl volume) per primer pair were carried out containing each 0.5 μM primer each, 250 

μM dNTPs, 0.3 μg/μl BSA, 1 × PCR buffer, 0.25 U Taq polymerase (5Prime, Germany), 10 – 

25 ng template under the following conditions: initial denaturation at 95°C for 5 min, 

followed by 35 cycles of denaturation (96°C, 1 min), annealing (58°C, 1 min), elongation 

(72°C, 2 min), and a final elongation step (72°C, 10 min). The replicate PCR reactions were 

pooled, 500 bp-amplicons extracted from an agarose gel (1.5% w/v) and purified using the 
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MinElute PCR Purification Kit (Qiagen) according to the manufacturer’s recommendations. 

Massive parallel tag sequencing of the amplicons was carried out on a 454 Life Sciences GS 

FLX sequencer (Roche, Basel, Switzerland) at the Sequencing Research Center, Cologne, 

Germany. The raw reads were submitted to a rigorous quality control procedure using a 

mothur version 1.32.1 routine (Schloss et al., 2009) including trimming and quality filtering 

of the reads.  

Archaeal 16S rRNA genes were amplified with primers Arch20F (5’ - TTC CGG TTG ATC CYG 

CCR G- 3’) (Massana et al., 1997) / Arch519R (5’- GGTDTTACCGCGGCKGCTG- 3’) (Sørensen 

and Teske, 2006). Primers were barcoded with the Ion Xpress barcodes and extended for 

ligation with Ion A and Ion truncated P1 adapters at the 5’ end. For each sample PCRs (50 

µl volume) were carried out containing 0.5 μM primer each, 250 μM dNTPs, 0.3 μg/μl BSA, 

1 × PCR buffer, 0.25 U Taq polymerase (5Prime, Germany), about 20 ng template under the 

following conditions: initial denaturation at 95°C for 5 min, followed by 30  cycles of 

denaturation (94°C, 1 min), annealing (58°C, 1 min), elongation (72°C, 3 min), and a final 

elongation step (72°C, 10 min). The reactions were separated on an E-Gel Size Selection Gel 

(Invitrogen) and the 500 bp-amplicon extracted following the manufacturer’s protocol. 

Then, the PCR product was purified using the MinElute PCR Purification Kit (Qiagen) 

according to the manufacturer’s recommendations. Sequencing of an equimolar pool of 

different amplicon libraries was carried out on the Ion Torrent Personal Genome Machine 

(PGM) system using the Ion PGMTM Sequencing 400 Kit (both Life Technologies) following 

the corresponding protocol (Ion 314TM Chip v2). The raw reads were submitted to a 

rigorous quality control procedure using BaseCaller V4.2 default parameters including 

trimming and quality filtering of the reads with some modifications (trim-qual-cutoff  = 15; 

trim-qual-window-size = 20).  

The bacterial and archaeal quality reads were clustered at 94.5% sequence identity and 

taxonomically assigned using the SILVA NGS pipeline with the ARB SILVA taxonomy 

database SILVA NR v119.1 (Quast et al., 2013).  

Raw reads were deposited at the EBI Short Read Archive (SRA) and can be accessed under 

the study accession number xxxxx. 
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MasD amplification, cloning and sequencing 

The delta subunit of the 1-methyl alkyl succinate synthase gene (masD) was amplified 

using the primer pair 7757f-1,f-2 (MasD amino acid position 395 in strain HxN1; accession 

number CAO03074) / 8543r (position 657 in HxN1) or primer pair 7766f (position 398 in 

HxN1) / 8543r (von Netzer et al., 2013). For each sample, 8 replicate PCRs (20 μl volume) 

per primer pair were carried out containing, 1 μM primer each, 250 μM dNTPs, 0.3 μg/μl 

BSA, 1 × PCR buffer, 0.25 U Taq polymerase (5Prime, Germany) under the following 

conditions: initial denaturation at 95°C for 5 min, followed by 35 cycles of denaturation 

(96°C, 1 min), annealing (58°C, 1 min), elongation (72°C, 2 min), and a final elongation step 

(72°C, 10 min). All replicate PCR reactions per sample were pooled, precipitated with 

ethanol, the 800 bp-amplicons were extracted from an agarose gel (1.5% w/v) and purified 

using the MiniElute PCR Purification Kit (Qiagen) according to the manufacturer’s 

recommendations. Cloning, Sanger sequencing, and sequence processing was done as 

described in Stagars et al. (in press). MasD amino acid sequences were clustered at 96% 

sequence similarity (MasD species-level cutoff (Stagars et al., in press). 

MasD sequences reported here have been deposited in the EMBL, GenBank, and DDBJ 

nucleotide sequence database under accession numbers xxxxxx . 

 

Phylogenetic analysis 

The 16S rRNA-based phylogenetic tree was calculated in ARB with nearly full-length 

sequences (>1300 bp) by neighbor joining and maximum likelihood analysis in 

combination with filters which consider only 50% conserved regions of the 16S rRNA. 

Partial sequences were subsequently inserted into the reconstructed consensus tree by 

parsimony criteria, without allowing changes in the overall tree topology. For MasD, 831 

deduced amino acid sequences were used for tree calculation using max imum likelihood 

(PhyML algorithm, Blosum 62 substitution model) considering 126 amino acid positions 

(433 to 559, strain HxN1). Only one representative sequence per OTU0.96 is shown in the 

final tree. 

 

Diversity analysis 
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The subsampled sequence abundance tables were used to calculate Inverse Simpson 

diversity indices and Chao1 richness using mothur v1.32.1 (Schloss et al., 2009). 

Dissimilarities (Chao, 1984; Hill et al., 2003) between all samples were calculated using the 

Bray-Curtis dissimilarity coefficient (i.e. relative sequence abundance, Bray and Curtis, 

1957). The resulting beta-diversity matrices were used for 3-dimensional non metric 

multidimensional scaling (NMDS) ordinations (Kruskal, 1964). Stress values below 0.2 

indicate that the multidimensional dataset is well represented by the 3D ordination. To test 

whether the inclusion of singletons affected further statistical tests we generated NMDS 

ordinations with and without rare biosphere (OTU comprising <0.01% of total sequences) 

and compared them using Procrustes correlation analysis (Gower, 1975). Procrustes 

correlation was highly significant (coefficient=0.935). Furthermore, to test the effect of 

subsampling we generated NMDS ordinations using all obtained OTUs and OTUs after 

subsampling. Procrustes correlation was 0.911. Neither subsampling nor the presence of 

rare biosphere OTUs did affect the overall trend. Thus we decided to include  all data in our 

analyses, to be able to identify types of microorganisms which can switch from rare to 

dominant modes of distribution. Taxa that were shared between initial and SOFT 

sediments or between layers were calculated using the Jaccard dissimilarity coefficient (i.e. 

presences/absence). Constrained correspondence analysis (CCA) was carried out to 

evaluate the combined effects of sulfate, methane, and sulfate reduction rates on the 

microbial community composition. The significance of these effects was assessed by 

analysis of similarity (ANOSIM). 

 

Catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) 

Sediment samples have been fixed in 3% formaldehyde for three hours at 4°C, washed with 

1x PBS and stored in ethanol-PBS (1:1) at -20°C. Samples were diluted, four times 

ultrasonicated on ice at 20% intensity, 20 cycles, 30 seconds (Bandelin Sonopuls HD200), 

and filtered on a 0.22 µm pore size polycarbonate filter. In situ hybridizations with 

horseradish peroxidase (HRP)-labeled probes followed by fluorescently labeled tyramide 

signal amplification (catalyzed reporter deposition) were carried out as described 

previously (Pernthaler et al., 2002). Permeabilization was performed by lysozyme 

treatment (10 mg ml-1) for 60 min at 37°C. Hybridization was done at 46 °C. Hybridized 



Chapter 5. Microbial community response to simulated petroleum seepage in Caspian Sea sediments 

93 
 

samples were analyzed with an epifluorescence microscope (Nikon Eclipse 50i). For each 

probe and sample, >1000 DAPI stained cells and their corresponding FISH signals were 

counted. Used probes (ordered from biomers.net; Ulm, Germany) and formamide 

concentrations are given in Table S2. 
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Supplementary for Chapter 5 

 

 

 

Figure S1. Rarefaction curves Rarefaction curves of A) bacterial 16S rRNA sequence and B) 
archaeal 16S rRNA gene sequences clustered at 94.5% identity in SOFT (solid lines) and initial 
(dashed lines) Caspian Sea sediment samples. 
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Figure S2. Community structure of (A, B) Proteobacteria and (C,D) Deltaproteobacteria in initial (A, 
C) and SOFT (B, D) sediments from Caspian Sea based on 16S rRNA gene sequencing. In overlay, 
depth profiles of methane, sulfate and sulfate reduction rate (SRR) are shown (data taken from 
Mishra et al., this issue). 
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Figure S3. Map of the Caspian Sea showing major oil fields (yellow dots) and the sampling site off-
shore Baku (Azerbaijan; red asterix).  
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Table S1: Percentage of shared bacterial and archaeal OTU0.945 between groups of samples. Pairwise 
comparison of community similarity within groups of samples based on presence absence OTU0.945 
of standardized data. 
 
 

 

 

Table S2: Percentage of shared bacterial and archaeal OTU0.945 between samples in different groups. 
 
 

 
SOFT 

0 – 16 cm 
initial  

4 – 8 cm 
initial  

10 – 16 cm 
SOFT 

0 – 4 cm 
SOFT 

4 – 8 cm 
SOFT 

10 – 16 cm 

B
ac

te
ri

a
 

initial 0 – 16 cm 43      

initial 0 – 4 cm  36 31 56 38 42 
initial 4 – 8 cm   33 39 51 37 

initial 10 – 16 cm    33 36 61 

SOFT 0 – 4 cm     41 31 
SOFT 4 – 8 cm      35 

 
 
 

 
SOFT  

6 – 16 cm 
initial  

 10 – 16 cm 
SOFT 

6 – 10 cm 
SOFT 

10 – 16 cm 

A
rc

h
ae

a 

initial 6 – 16 cm 23    

initial 6 –10 cm  21 59 18 

initial 10 – 16 cm   18 60 
SOFT 6 – 10 cm    19 

 

* Pairwise comparison of community similarity within groups of samples based on presence absence 
OTU0.945 of standardized data (resampling without replacements of 2730 sequences for bacterial 16S rRNA 
and 3908 sequences for archaeal 16S rRNA). Values refer to maximum, mean and minimum shared OTU0.945 
between any given pair of samples from the respective group. 

 
 

 

 
 No. of samples 

Max shared OTU0.945 
(%)* 

Mean shared  
OTU0.945 (%)* 

Min shared  
OTU0.945 (%)* 

B
ac

te
ri

a
 initial  6 97 56 32 

SOFT 5 96 54 31 

0 – 4 cm 3 75 71 70 
4 – 8 cm 4 75 63 54 

10 – 16 cm 4 75 67 57 

A
rc

h
ae

a
 initial 5 83 58 39 

SOFT 5 80 60 38 

6 – 10 cm 5 79 61 41 

10 – 16 cm 5 74 65 45 
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Table S4. Frequencies of archaeal 16S rRNA gene sequences retrieved from initial and SOFT core 
sediments (6 – 16 cm depth) that are affiliated with taxonomic groups known to be involved in the 
methane cycle. Total number of quality-trimmed archaeal 16S rRNA tag sequences: 25968 for initial 
sediments and 128093 for SOFT core sediments. Taxonomy according to ARB SILVA (release 119, 
April 2015). 
 

 Initial  
sediment 

SOFT core sediment 

                                    [% archaeal sequences] 

ANME-2a-2b  0.015 
ANME-2c  0.001 
GoM-Arch87  0.001 
Methermicoccaceae  0.009 
Methanosaetaceae 0.004 0.012 
Methanocellaceae   0.002 
Methanomicrobiaceae  0.702 
Methanosarcinaceae    

Methanolobus 0.065 0.126 
Methanococcoides 0.008 0.040 
Methanosarcina 0.004 11.125 
Methanosaeta 0.004 0.016 
Others (ANME-3, 
Methanohalophilus  

 0.020 

SUM [% of all Archaea]  0.085 12.069 

 

 

Table S5. Oligonucleotide probes used in this study 



 

109 
 

 



 
 

110 
 

 

6. Manuscript III. 

 

Comparative study of microbial petroleum degradation in marine seep 

vs. non-seep sediments in a simulated petroleum seepage 

 

Sonakshi Mishra a, Marion Stagars b, Peggy Wefers a,c, Katja Laufer d , Johanna Maltby a, Mark 

Schmidt a, Katrin Knittel b, Ira Leifer e  and Tina Treude a, b* 

 

aGEOMAR Helmholtz Center for Ocean Research Kiel, Department of Marine Biogeochemistry, 

Kiel, Germany 

bMax Planck Institute for Marine Microbiology, Bremen, Germany 

cUniversity of Rostock, Germany 

dCenter for Applied Geoscience, University of Tuebingen, Germany 

eMarine Science Institute, University of California, Santa Barbara, USA 

b*Present address: University of California, Los Angeles, Departments of Earth, Planetary & 

Space Sciences and Atmospheric & Oceanic Sciences, Los Angeles, USA 

 

 

In preparation for  

Geochimica et Cosmichimica Acta, 2016



Chapter 6. Comparative study of microbial petroleum degradation in marine seep vs. non-seep 
sediments in a simulated petroleum seepage 

 

111 
 

Abstract 

The present study investigates the degradation of petroleum in sediments from the North 

Alex Mud Volcano in the Eastern Mediterranean, a beach in the Santa Barbara Channel near 

the Coal Oil Point seep field and the Eckernfoerde Bay in the South West Baltic Sea under a 

simulated petroleum seepage. We investigated the biogeochemical response of the 

different marine sediments to petroleum under quasi in situ conditions by simulating a 

petroleum seepage in a sediment-oil-flow-through-system (SOFT system). The highest 

diffusive oxygen uptake (DOU) observed in all the cores were in the range of 4 to 5 mmol 

m-2 d-1. Sulfate reduction was found to be the most important process in the anaerobic 

degradation of petroleum at all three sites. The volatile non-methane alkanes (C2 to C6) at 

all the three sites were almost completely depleted within the sulfate reduction zone. 

However, the response time for sulfate reduction activity was around three to four times 

longer for the sediments from the Santa Barbara Channel beach and the Eckernfoerde Bay  

compared to the North Alex Mud Volcano. Petroleum degradation by methanogenic 

archaea, most likely belonging to a rare biosphere was indicated in the otherwise 

oxygenated beach sediments of the Santa Barbara Channel. By comparing the results to 

petroleum degradation in sediment slurries, we found that there is an overestimation of 

the microbial response in sediment slurries compared to the SOFT system. Among all the 

three sites, sediments from the North Alex Mud Volcano demonstrated the fastest response 

to petroleum degradation by virtue of their natural adaptation to hydrocarbon seepage.  
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1. Introduction 

Almost half of the petroleum that enter earth’s ocean each year is assigned to natural 

hydrocarbon seeps alone (Kvenvolden & Cooper, 2003). Hydrocarbon seeps are mostly 

found in basin margins which have oil-producing formations and unconformities at the 

surface (Hunt, 1995). Petroleum seeping out of these seeps to the seawater can form oil 

slicks that can spread over tens of kilometers (Leifer et al., 2006). Petroleum in the marine 

environment undergoes physical, chemical and biological weathering (Wardlaw et al., 

2008). The most important weathering process among them is microbial degradation (Das 

& Chandran, 2010 and references therein). Without the microbial degradation of petroleum 

that seeps out the ocean floor every year, our earth’s ocean would be swamped with a thin 

layer of oil today (Head et al., 2006). Petroleum hydrocarbons like some aliphates and 

aromatics in the marine environment are known to be degraded by microbes under aerobic 

and as well as anaerobic conditions by different pathways (Leahy & Colwell, 1990; 

Harayama et al., 1999 and references therein). Most of the classical studies on microbial 

degradation of petroleum are based on selective utilization of hydrocarbons in enrichment 

cultures and isolates (for example, Ehrenreich et al., 2000; Cravo-Laureau et al., 2007; 

Kniemeyer et al., 2007). Since the use of batch cultures is insufficient to know the fate of 

petroleum in nature (Horowitz & Atlas, 1977), a continuous sediment-oil-flow-through 

system called the SOFT system was introduced, to study the biogeochemical response of 

sediment to simulated petroleum seepage  (Mishra et al., submitted).  The SOFT system 

maintains quasi in-situ conditions and uses intact sediment cores to study microbial 

degradation of petroleum during continues petroleum seepage, thereby, providing 

information on the fate of petroleum under more natural conditions (Mishra et al., 

submitted). The current study aims to use a comparative approach and investigate the 

effect of petroleum seepage on the biogeochemistry of different kind of sediments with the 

SOFT system. The sediment cores used in this study are collected from (1) the North Alex 

Mud Volcano (NAMV), an active gas chimney in the Eastern Mediterranean Sea (Dupré et 

al., 2007), (2) a beach in the Santa Barbara Channel near the Coal Oil Point seep field, and 

(3) the Eckernfoerde Bay in the South West Baltic Sea. Due to presence of nearby seepage 

activity, the NAMV and the Santa Barbara cores are considered to be pre-adapted to 
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petroleum contaminations, whereas the Eckernfoerde Bay core is considered a reference 

pristine sediment. 

The main objectives of this study are to i) investigate the biogeochemical changes , 

microbial community response and succession of petroleum degradation in different 

sediment types during a simulated petroleum seepage in the SOFT system ii) compare the 

response of petroleum pre-adapted and pristine sediment to the petroleum seepage iii) 

compare the microbial response to the simulated petroleum seepage in the intact sediment 

cores of the SOFT system to sediment-petroleum slurries. We hypothesize that i) 

petroleum seepage simulation in the SOFT system will affect the vertical distribution of 

redox processes, microbial community, and petroleum composition and the petroleum will 

move more evenly in the sandy sediments compared to the fine grained sediments ii) 

sediment cores from NAMV and Santa Barbara Channel will respond faster to petroleum 

seepage than Eckernfoerde Bay’s because of prior adaptation of the microbial community 

to nearby hydrocarbon seeps iii) because of better availability of nutrients under 

homogenized conditions, there will be an overestimation of the microbial response to 

petroleum in sediment-slurries compared to the SOFT system.   

2. Methods 

2.1 Study sites and sampling 

North Alex Mud Volcano, Eastern Mediterranean  

North Alex Mud Volcano (NAMV) is located at 31°58.19′N and 30°08.21′E in the Eastern 

Mediterranean Sea at a water depth of about 500 m (Feseker et al., 2010) (Fig 1). Situated 

in the  western part of the Central Nile Deep Sea Fan to the north of Alexandria (Egypt), the 

NAMV is a deep rooted active gas chimney associated with methane and gas emissions  in 

the Eastern Mediterranean Sea (Dupré et al., 2007; Omoregie et al., 2009; Feseker et al., 

2010). The temperature at the seabed of the NAMV has been reported to be around 13.8°C 

(Feseker et al., 2010). In November 2008, sediment cores were collected onboard R/V 

Pelagia (PE298) from the center of the mud volcano using a multicorer with 8 cores (60 cm 

length, 10 cm diameter). Five replicate cores were used for (i) initial sulfate reduction 
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determination (two replicate radiotracer core liners, 30 cm length x 2.6 mm inner 

diameter), (ii) sediment analyses (initial methane concentration and porosity), (iii) 

porewater analyses (initial sulfate concentration), (iv) the SOFT experiment (one SOFT 

core liner, 30 cm long x 6.8 cm inner diameter), and (v) sediment slurry experiments 

(sediment collected in 250 ml glass bottles, sealed headspace free with butyl stopper), 

respectively.  While samples for the determination of initial parameters were handled 

immediately, the core for the SOFT experiment and the sediment for slurry experiments 

were stored at 0°C until further handling. 

Santa Barbara beach near Coal Oil Point, Santa Barbara Channel  

Along the northern margin of the Santa Barbara Channel, many natural hydrocarbon seeps 

are found in the continental shelf that emit oil and gas. Coal Oil Point seep field is the most 

intense seep in this are that lies around 15 km west of the city of Santa Barbara (Hornafius 

et al., 1999). In May 2014, sediment was collected directly from the Bacara Resort beach in 

Santa Barbara near the Coal Oil Point seep (34°.25.86’ N, -119°55.01’E) area using three 

SOFT core liners and three radiotracer core liners. Samples were collected about 10 m 

inshore of wave breaking, with breakers of up to 1 m in the swash zone. Water depth varied 

between 5 cm deep and 50 cm. Thus the samples were collected in the swash zone of the 

lowest tide. The swash was fairly vigorous, with continuous sediment limiting water 

visibility to 5 cm. The three SOFT core liners were used to collect sediment cores for (i) 

sediment analyses (initial porosity and methane) (ii) porewater analyses (initial sulfate 

concentration), and (iii) the SOFT experiment, respectively. The radiotracer cores were 

used for determination of initial sulfate reduction rates. All cores were stored in a cooling 

box at the Marine Science Institute in Santa Barbara until being shipped to Kiel in June 

2014. The day after their arrival in Kiel, cores for the determination of initial parameters 

were handled immediately, while the SOFT core for the experiment was stored at 0°C until 

further handling. 
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Eckernfoerde Bay, Baltic Sea 

The muddy sediments of Eckernfoerde Bay are associated with high organic loading and 

sedimentation rates (Whiticar, 2002). Phytoplankton blooms lead to pronounced hypoxia 

and anoxia between March and September as result of organic matter degradation 

(Smetacek, 1984, 1985; Bange et al., 2010). In April 2012 and November 2013, sediment 

cores were collected at 28 m water depth at the Time Series Station "Boknis Eck" (BE, 

54°31.15 N, 10°02.18 E), located at the entrance of Eckernfoerde Bay in the southwestern 

Baltic Sea. Sediment cores were collected onboard F/K Littorina using a miniaturized 

multicorer that holds 4 core liners (60 cm length, 10 cm diameter) for the sediment slurry 

experiment and the SOFT experiment, respectively. For the sediment slurry experiment, 

sediment cores were immediately sub sampled (sliced and homogenized) at 10°C and 

transferred into sterile, N2 flushed bottles (anoxic) and sealed with butyl rubber stoppers. 

They were stored at 0°C until slurry preparation. For the SOFT experiment, the sediment 

core was brought back to the laboratory and stored at 0°C.  

 

Figure 1. Study sites: North Mud Volcano in the Eastern Mediterranean (black dot), Santa Barbara 
Channel (red dot) and the Eckernfoerde Bay in the Baltic Sea (yellow dot).  
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2.2 SOFT system set up 

The SOFT system is designed to simulate petroleum seepage in intact sediment cores by 

providing a diffusive supply of electron acceptors via artificial oxic seawater from above 

and pumping petroleum from the bottom of the core (detailed description is provided in 

Mishra et al., unpublished). Intact sediment cores are collected in gas tight polycarbonate 

core liners (length 30 cm, diameter 6.8 cm). The core liners have 3 vertical lines of 21 

sampling holes (diameter 4 mm, distance between two holes 5.8 mm), which are sealed 

with residue-free silicon (Aquasil, Probau). The top cap of the core liner allows three tubing 

connections for i) inflowing artificial seawater ii) outflowing seawater to a wastewater 

reservoir ii) aeration via an air pump. The top cap of the core liner was sealed with 

permeable laboratory film (Parafilm, Pechiney Plastic Packaging) to allow gas exchange 

with the atmosphere. The bottom part of the core was kept anoxic by sealing the end of the 

core with a rubber stopper. Petroleum was introduced into the sediment core through two 

metal tubes (outer diameter 3 cm, inner diameter 1.9 mm) that were integrated into the 

rubber stopper through gas tight Iso-versinic tubes (LLG) via a peristaltic pump (Medorex, 

TL/10E, min/max pump volume 0.1 μL min–1/400 μl min–1) at 3.5 µl min-1 at regular 

intervals of time. The petroleum (light and live crude oil) used in the experiment originated 

from the North Sea (Mittelplatte) and was provided by DEA Deutsche Erdoel AG (sampled 

February 2013). Artificial seawater was prepared by the respective amounts of sea salts 

(Sigma Aldrich, product number S9883) per liter of sterile deionized water to achieve the 

respective salinities (35 g, 22 g, 35 g in 1000 ml water for NAMV, Eckernfoerde Bay and 

Santa Barbara for salinities of 35, 22 and 35 psu, respectively). No additional vitamins were 

added to the seawater to keep it as natural as possible. The artificial seawater was supplied 

to the sediment core from the seawater reservoir via peristaltic pumps (Medorex, TL/10E, 

min/max pump volume 0.1 μL min–1/400 μl min–1 ) at 25 µl min-1 through gas tight Iso-

versinic (LLG) tubes. Sediment cores from NAMV, Santa Barbara Channel and Eckernfoerde 

Bay were used in the SOFT system to compare the effect of petroleum seepage on the 

biogeochemistry of different kind of sediments. An overview of the SOFT experimental 

conditions along with the different physical properties of the three sites is provided in 

Table 3.  
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Table 3. Sediment properties, location and experimental conditions for the SOFT experiment 

Site Geographical 

coordinates 

Presence of 

hydrocarbon 

seeps 

Sediment 

type 

Permeability 

based on 

sediment 

type 

Core 

length 

(cm) 

Temp. of 

the SOFT 

experiment 

(°C) 

Run time of 

the SOFT 

experiment 

(d) 

NAMV 34.431041°N 

119.916946°

E 

yes Fine 

grained 

(clayish) 

Low ~22 16 190 

Santa Barbara 54.530383°N 

10.046067°E 

yes Coarse 

grained 

(sandy) 

High ~15 13 227 

Eckernfoerde 

Bay 

31.969333°N 

30.136367°E 

 

no Fine 

grained 

(muddy) 

Low ~20 13 395 

 

2.3 Microsensor analyses 

Microelectrode measurements were done for dissolved total sulfide and oxygen 

concentrations in the SOFT sediment cores according to Mishra et al., (submitted).  

Dissolved total sulfide (or “sulfide”) was measured with a needle H2S microelectrode 

(Unisense, Denmark; H2S–N, tip diameter 0.8 mm). The electrodes were inserted 

horizontally around 3 to 4 cm into the sediment core through the silicon filled liner holes 

and allowed to adapt between 15 to 20 minutes until the signal drift reduced and a value 

was noted that was at least 90 % of the response signal (Steeb et al., 2014, Mishra et al., 

submitted). Calibration standards consisted of 6 to 7 different concentrations of Na2S 

standard solution (0, 100, 200, 500, 1000, 2000, 4000 μmol l–1). The standards were 

prepared with oxygen-free citric acid-phosphate buffer, 10 % v/v TiCl and set to pH 7. The 

calibration standards were set at pH 7 as the pH value is closer to the pH values found in 

the sediment cores (Appendix 1). Therefore, it should be noted that the total sulfide data 

shown in our sediments cores are not corrected for individual pH points. The calibration 
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standards were stored overnight at the respective experimental temperatures to obtain the 

same temperature of the sediment core. The sensors were calibrated prior to 

measurements using the calibration software offered by Unisense (SensorTrace PRO) and 

at the end of the measurements, the data were corrected for any shift in the electronic 

signal.  

Oxygen was measured with a miniaturized Clark-type glass microelectrode (Unisense, 

Denmark; OX-100, tip diameter 100 µm). A two point calibration was done using the 

overlaying water as 100% atmospheric oxygen and the lowest signal in the sediment as the 

zero reading (0% oxygen). Vertical microprofiles of oxygen were obtained with a step size 

of 100 µm measuring period of 3 s and waiting period of 15 s. The oxygen penetration 

depth and the Diffusive Oxygen Uptake (DOU) was calculated from the oxygen 

microprofiles according to (Glud et al., 1994). 

Microsensor measurements were always done before porewater sampling to avoid 

disturbances in the sediment by the porewater extraction. 

2.4 Porewater extraction and analyses 

Rhizons (Rhizosphere, CSS-F, length 5 cm, diameter 2.5 mm, pore size 0.2 μm) were used to 

extract porewater from the initial sediment cores of Santa Barbara and Eckernfoerde Bay. 

Porewater extraction in the initial NAMV core was done by using a POM 

(polyoxylmethylen) pore-water pressing bench (KC Denmark). For the SOFT cores, the 

rhizons were permanently fixed to one set of the three vertical sampling hole lines in the 

core liner for the entire duration of the experiment (Mishra et al., submitted). 1.5 to 2 ml of 

porewater was extracted per rhizon at intervals of 2 cm at regular intervals of time. 0.05 to 

0.1 ml of the porewater was used immediately for the determination of total alkalinity by 

titration. Determination of alkalinity was done by titrating 50 or 100 µl of the supernatant 

by 0.01 M HCl titrosol solution according to (Ivanenkov & Lyakhin, 1978) with an electric 

burette (876, Dosimat plus, metrohm). Methyl red and methylene blue was used as an 

indicator and the certified seawater standard IAPSO as the calibration standard. The  rest of 

the porewater was stored in 2 ml plastic cyro-vials at -20 °C, and was later used for 



Chapter 6. Comparative study of microbial petroleum degradation in marine seep vs. non-seep 
sediments in a simulated petroleum seepage 

 

119 
 

analyzing sulfate by ion chromatography (Mishra et al., submitted). Porewater extraction 

was always done at the end of the microsensor analyses to avoid disturbances within the 

sediment. 

2.5 Core slicing for sediment analyses 

The initial and SOFT cores (at the end of the SOFT experiment) were sliced on an extruder 

(diameter ~5.8 cm) every 1 to 2 cm  for the analyses of C1-C6 n-alkanes and their δ13C-

methane isotopic signature, C10-C38 n-alkanes, porosity, sulfate reduction rates, total 

carbon and nitrogen (TCN), 16S rRNA phylogenetic studies according to Mishra et al. 

(submitted). For slicing, the bottom cap was removed slowly and the core liner was 

immediately placed on the extruder. The overlaying seawater was removed from the top 

with a 60 ml syringe. However, complete removal of the oil was not possible leading to 

settling oil particles on the surface. Therefore, the 0-1 cm sediment layer would not be 

included in the discussion for some sediment parameter analyses (e.g., n-alkane analyses) 

because of the additional petroleum hydrocarbons that might have been contributed by the 

oil slick (Mishra et al., submitted).  

2.6 Concentration of volatile n-alkanes (C1 to C6) and their carbon isotopic signature 

A headspace technique was used to determine the dissolved volatile hydrocarbons (C1-C6) 

in the sediment cores. Two ml of sediment and 5 ml of 2.5% (w/w) NaOH solution were 

equilibrated in a septum-sealed 13 ml headspace glass vial at room temperature (Sommer 

et al., 2009). “Thermo Trace ultra” (Thermo Scientific) gas chromatograph equipped with 

flame ionization detector (carrier gas: helium 5.0; capillary column: RT Alumina Bond -KCl, 

column length: 50 m; column diameter: 0.53 µm) was used to determine hydrocarbon 

composition (C1-C6 n-alkanes) of the headspace gas. Precision of ±1-3% was achieved in 

comparison to standard hydrocarbon mixtures. Stable carbon isotope ratios of methane 

(C1) were measured by using a continuous flow GC combustion - Isotope Ratio Mass 

Spectrometer combination (Mishra et al., submitted).  
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2.7 Higher n-alkanes (C10 to C38) 

C10 to C38 n-alkane analyses were done according to Mishra et al., (submitted). Sediment 

samples collected during the slicing were wrapped in aluminum foil and stored at -20°C 

until analyses. For n-alkane analyses, the sediment samples were first extracted with 

dichloromethane and acetone (80:20) at 100°C in an Accelerated Solvent Extraction 

(Dionex ASE 150, Thermo Scientific) and then measured in GC-MS (Shimadzu, GCMA-

QP2010 with auto injector AOC-20i) for n-alkanes according to Mishra et al., (submitted). A 

chromatographic column filled with 1 g of silica gel (Roth, 230-400 µm mesh size, 

preheated at 450°C for 4 hours and activated with 8% v/w with deionized water) with 

silanized glass wool at the outlet end was used to fractionate the extract before measuring 

in the GC-MS. The GC-MS had a capillary column (ZB-1HT Inferno, length 30 m, thickness 

0.25 µm, diameter 0.25 mm). Helium Alphagaz-1 (Air Liquide) was used as the carrier gas 

with a flow rate of 0.8 ml min-1. The samples were measured in scan mode with the mass-

to-charge ratio (m/z) range of 43 to 85. Deuterated tetracosane (C24D50) was used as an 

internal standard to get the recovery of individual n-alkanes. Precision of the method for 

individual n-alkanes is provided in Mishra et al., (submitted).  

2.8 Sediment Porosity and total C, N, S 

Porosity of the samples was estimated from the difference in weight of the wet and freeze-

dried sediment. It was then calculated from the water content (difference in weight of wet 

and freeze-dried sediment) assuming a dry solid density of 2.63 g cm-3. It should be noted 

that in samples from SOFT core, as the petroleum was not totally removed by the freeze-

drying process, porosity values might appear lower than their actual values. Samples for 

total C, N and S were sub-sampled from the porosity samples and analyzed by CARLO ERBA 

Elemental Analyzer (NA 1500) (Mishra et al., submitted).  

Sulfate reduction rates  
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Sulfate reduction rates in the initial radiotracer cores were determined by injecting 6 µl of 

the carrier-free 35SO42- radio tracer (dissolved in water, 200 kBq, specific activity 37 TBq 

mmol−1) according to the whole-core injection method (Jørgensen, 1978). In the SOFT 

cores, 3 to 4 ml sediment samples were collected every 2 cm vertically in 5 ml glass tubes 

and sealed with butyl rubber stoppers after sampling, to which 6 µl carrier-free 35SO42- 

radiotracer (dissolved in water, 200 kBq, specific activity 37 TBq mmol−1) was injected 

(Treude et al., 2005b). Incubation temperature was 16 °C for NAMV (initial only) and 13 °C for 

all other sites (initial and SLOT). Incubation times were between 8 and 24 hrs. After 

incubation, bacterial activity was stopped by transferring each sediment layer into 50 ml 

plastic centrifuge tubes filled with 20 ml zinc acetate (20% w/w). Five controls were 

prepared by adding the tracer to killed samples. The vials were stored at -20°C until rate 

determination by the cold chromium distillation procedure according to (Kallmeyer et al., 

2004). 

2.5 Slurry experiment 

Sediment slurries (1:7; sediment:anoxic artificial seawater medium) were prepared with 

Eckernfoerde Bay sediment from 0-10 cm (collected in April 2012, see section 2.1). The 

slurries were prepared in 15 ml Hungate tubes and sealed with butyl rubber stopper and 

crimped with aluminum caps. The Hungate tubes containing the sediment were flushed 

with N2/CO2 (80:20, v/v) for 3 minutes to maintain anoxic conditions. The slurries were 

treated with 0.6% volume of light crude oil originating from Mittelplatte (provided by DEA 

Deutsche Erdoel AG). The experiment was conducted at 13°C in dark. Sediment slurries 

with the NAMV sediment (5 to 10 cm sediment depth, collected in November 2008, see 

section 2.1) were also prepared in 1:7 (sediment:anoxic artificial seawater medium). The 

slurries were prepared in 100 ml serum vials and sealed with butyl rubber stopper and 

crimped with aluminum caps. One ml of the supernatant was sampled at regular intervals 

with a N2 flushed syringe for sulfide and alkalinity determination. Determination of sulfide 

concentration in the supernatant was done after (Cord-Ruwisch, 1985). Determination of 

alkalinity was done by titrating 50 µl of the supernatant by 0.01 M HCl titrosol solution 

according to (Ivanenkov & Lyakhin, 1978) and using the certified seawater standard IAPSO 
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for calibration. Titration was done immediately after sampling, using a methyl red and 

methylene blue indicator with an electric burette (876, Dosimat plus, metrohm). 

Table 1. Experimental conditions for sediment-oil slurries with sediments from the NAMV and the 
Eckernfoerde Bay 

Sites Temp. 

(°C) 

Salinity 

(psu) 

Artificial seawater 

medium 

Vials Dilution 

Sed:Medium 

Total Vol. 

(ml) 

Oil 

(vol.%) 

Eckernfoerde Bay 13 22 Sulfate rich 

(Widdel & Bak, 

1992) 

15 ml 

Hungate 

tubes 

1:7 1 0.6 

NAMV 20 35 Sulfate rich  

(Widdel & Bak, 

1992) 

100 ml 

Serum vials 

1:7 70 1 

 

2.6 Phylogenetic studies 

DNA extraction 

DNA was extracted from 1 g sediment that was frozen immediately after sampling with the 

UltraClean soil kit (MoBio) according to manufacturer's recommendation with the 

following modifications: Initial cell lysis was performed by adding 0.02 mg ml-1 proteinase 

K (Merck, Darmstadt, Germany) to the sample and incubating for 50 min at 37 °C and 

moderate shaking. Besides that, a second beat beating step was done. The final elution was 

done in 50 µl elution buffer. 

 

Sequencing of 16S rRNA genes 

Bacterial 16S rRNA genes were amplified with the primer pair Bakt_341F (5’ - 

CCTACGGGNGGCWGCAG- 3’) / Bakt_785R (5’- GACTACHVGGGTATCTAATCC- 3’) 

(Herlemann et al., 2011). Primers were barcoded and extended with a SfiI restriction site at 

the 5’ end for ligation with the 454-adapters. For each sample, 8 replicate polymerase chain 



Chapter 6. Comparative study of microbial petroleum degradation in marine seep vs. non-seep 
sediments in a simulated petroleum seepage 

 

123 
 

reactions (20 μl volume) per primer pair were carried out containing each 0.5 μM primer, 

250 μM deoxynucleotides, 0.3 μg/μl bovine serum albumin, 1 × polymerase chain reaction 

buffer, 0.25 U Taq polymerase (5Prime, Germany), 10 – 25 ng template under the following 

conditions: initial denaturation at 95°C for 5 min, followed by 35 cycles of denaturation 

(96°C, 1 min), annealing (58°C, 1 min), elongation (72°C, 2 min), and a final elongation step 

(72°C, 10 min). The replicate polymerase chain reactions were pooled, 500 basepair-

amplicons extracted from an agarose gel (1.5% w/v) and purified using the MinElute 

polymerase chain reaction Purification Kit (Qiagen) according to the manufacturer’s 

recommendations. Parallel taq sequencing of the amplicons was carried out on a 454 Life 

Sciences GS FLX sequencer (Roche, Basel, Switzerland) at the Sequencing Research Center, 

Cologne, Germany. The raw reads were submitted to a rigorous quality control procedure 

using a mothur version 1.32.1 routine (Schloss & Westcott, 2009) including trimming and 

quality filtering of the reads. The quality reads were taxonomically assigned using the 

SILVA NGS pipeline with the ARB SILVA taxonomy database SILVA NR v119.1(Quast et al., 

2012).  

 

3. Results 

3.1 Evolution of sediment properties in the SOFT system 

The effect of petroleum seepage on the porosity was different for all three sites. In the 

NAMV core, there was only a little decrease in porosity in the SOFT core (0 .73 to 0.66) 

compared to the initial core (0.75 to 0.66) (Fig. 2). The maximum decrease in porosity was 

in the sandy sediment of Santa Barbara core. At 13 cm depth, porosity decreased by 40% 

from 0.36 in the initial core to 0.16 in the SOFT core. For the Eckernfoerde Bay site, except 

for a slight decrease in porosity at the shallower depths in the SOFT core compared to the 

initial core, the porosity did not change much between the initial and the SOFT core.  

For the NAMV site, the amount of organic carbon (Corg) increased from around 0.9 to 1% in 

the initial core to a maximum of 57% at the end of the SOFT experiment (Fig. 3). The initial 

values for Corg in the Santa Barbara and Eckernfoerde Bay cores are not available. In the 
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SOFT cores, the Corg was relatively high for both, Santa Barbara and Eckernfoerde Bay sites. 

The Corg ranged between 1 and 10% in the Santa Barbara SOFT core and 4 and 10% in the 

Eckernfoerde SOFT core (Fig. 3). All three sites exhibited high C/N ratios (Fig. 3). The Santa 

Barbara SOFT core had the highest C/N ratio with a maximum value of 231 at 13 cm. The 

C/N ratio in the Eckernfoerde Bay and the NAMV SOFT cores were in the range of 10 and 

20, and 10 and 60, respectively.  

 

 

Figure 2. Porosity over depth in the initial sediment core and the final SOFT sediment cores from 
NAMV, Santa Barbara Channel and Eckernfoerde Bay. 

 



Chapter 6. Comparative study of microbial petroleum degradation in marine seep vs. non-seep 
sediments in a simulated petroleum seepage 

 

125 
 

 

Figure 3. Organic carbon (Corg %), C/N ratio, total nitrogen (N%) and ratio of the weight of 
petroleum to sediment weight per depth section (Petroleum extract/Sediment) in the SOFT cores of 
NAMV, Santa Barbara Channel and Eckernfoerde Bay. 

 

 3.1 Temporal and spatial development of redox zones in the SOFT system 

Porewater analyses and microsensor measurements were conducted in the sediment cores 

to obtain the concentrations of dissolved oxygen, sulfate, sulfide, methane and alkalinity. In 

all the three SOFT cores, a vertical zonation of different redox processes was seen during 

the petroleum seepage (Fig. 4, 5, 6, 7), which was in accordance with the natural redox 

ladder of marine sediments (Jorgensen, 2006). 

 At the sediment surface, an oxic layer was found in the SOFT cores from all three sites (Fig. 

4). The penetration depth of oxygen differed at the three sites. While penetration was 

highest in the Santa Barbara core (0.8 - 1 cm, Fig. 4), it ranged between 0.2 and 0.4 cm in 

the NAMV and Eckernfoerde Bay cores. Highest diffusive oxygen uptake (DOU) was 

between 4 to 5 mmol m-2 d-1 in all three cores. However, the temporal development of 
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oxygen penetration depth and DOU slightly varied between the sites (Fig. 4). In the NAMV 

core, oxygen penetration depth and DOU showed a zig zag profile over time. In the Santa 

Barbara core, the DOU was high at first (3 mmol m-2 d-1) and then decreased to 0.9 mmol m-

2 d-1. In the Eckernfoerde Bay core, the penetration depth clearly decreased over time from 

0.4 to 0.2 cm and the DOU increased from 1 to 4.3 mmol m-2 d-1. 

 

Figure 4. Temporal development of oxygen penetration depth (PD, dotted line with crosses) and 
diffusive oxygen uptake (DOU, solid line with circles) in the SOFT cores of North Alex, Santa 
Barbara Channel and Eckernfoerde Bay. 

 

The sulfate reduction zone was found below the depletion of oxygen within the first 

centimeter (Fig. 5, 6, 7) at all sites. In the NAMV core, a decrease in sulfate concentrations 

combined with a simultaneous increase in sulfide production (up to 2000 to 4000 µM) and 

alkalinity (up to 30 mM) indicated an active sulfate reduction zone below the oxic layer all 

the way up to the bottom of the core (Fig. 5). Two peaks of total sulfide production were 

found between 3 and 8 cm (1080 µM) and between 8 and 16 cm (1839 µM) at the end of 

the SOFT experiment. The highest sulfide concentration (3904 µM, 14 cm) was seen 147 

days after the start of the SOFT experiment. At this time point, sulfate was completely 

depleted at 16 cm. Direct sulfate reduction rate measurements after the SOFT experiment 

are missing. In the initial core, the highest sulfate reduction activity was seen between 7 

and 16 cm based on the direct rate measurements. In the Santa Barbara core, porewater 

sampling and microelectrode measurements were achieved only until 12 cm due to a stone 

present in the bottom 4 cm of the core. Sulfate concentrations decreased over depth but 
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were not completely depleted at 12 cm (Fig. 6). Sulfide and alkalinity increased after 129 

days (Fig. 6). Compared to the initial Santa Barbara sediment core, which had around 5 µM 

sulfide, sulfide production increased to a maximum of 2622 µM in the SOFT core by the end 

of the experiment. Very high sulfate reduction rates were found in the Santa Barbara SOFT 

core with a maximum value of 2061.3 nmol cm-3 d-1 at 3 cm. The integrated sulfate 

reduction rates (0-9 cm) increased from about 0.4 mmol SO4 2- m-2 d -1 in the initial core to 

95.2 mmol SO4 2- m-2 d -1in the final SOFT core. Alkalinity increased from 4 mM to about 30 

mM in the lower half of the core. Based on the sulfide concentrations and the sulfate 

reduction rates, we assume the highest sulfate reduction activity in the Santa Barbara core 

to be between 0 and 8 cm. During the first 64 days of the Eckernfoerde Bay core incu bation, 

sulfate concentration decreased from around 20 mM at the surface to around 10 mM at the 

bottom of the core with very small sulfide increase (Fig. 7). After 349 days, the sulfate was 

already decreased to about 0.4 mM at 8 cm and the sulfide profile mirrored the sulfate 

profile with a peak production of 1717 µM at 6 cm. The integrated sulfate reduction rates in 

the SOFT core (0 -18.5 cm) were 167.8 mmol SO4 2- m-2 d -1 at the end of the petroleum 

seepage. It should be noted here that due to missing data at some depths, there might be an 

underestimation of the sulfate reduction rates. Sulfate reduction rates (80 to 100 mnol cm-

3 d-1) were seen below 8 cm where sulfate concentrations were in the range of 200 to 400 

µM (Fig. 7, zoomed in sulfate data). Alkalinity increased from 3 mM to about 30 mM in the 

lower half of the core. Based on the sulfide and alkalinity data, and the sulfate reduction 

rates, we assume that the highest activity of the sulfate reduction zone in the Eckernfoerde 

Bay core to be between 0 and 8 cm.  

Below the sulfate reduction zone, a methanogenic zone was observed in the Eckernfoerde 

Bay and Santa Barbara core (see section 3.4).  
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 Figure 5. Temporal development of biogeochemical profiles in the NAMV sediment core used in 
the SOFT system over the course of the experiment. Sulfate (blue dashed line with triangles), total 
sulfide (black solid line with squares), total alkalinity (brown dotted line with crosses), sulfate 
reduction rates (SRR, green bars) and methane (pink dash dotted line with circles). Initial 
conditions were measured in a replicate core before the start of the SOFT system. SRR bars in the 
initial plot represent the average of three replicates, while single values of the SRR replicates are 
shown as empty black diamonds, stars and crosses. Please consider the change of scale in some of 
the x-axes. 
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Figure 6. Temporal and spatial development of biogeochemical profiles in the Santa Barbara 
Channel sediment core during the SOFT experiment. Sulfate (blue dashed line with triangles), total 
sulfide (black solid line with squares), total alkalinity (brown dotted line with crosses), sulfate 
reduction rates (SRR, green bars) and methane (pink dash-dotted line with circles). Initial 
conditions were measured in a replicate core before the start of the SOFT system. SRR bars in the 
initial plot are the average of three replicates and the error bars represent the standard deviation. 
Please consider the change of scale in some of the x-axes. 
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Figure 7. Temporal and spatial development of biogeochemical profiles in the Eckernfoerde Bay 
sediment core during the SOFT experiment. Sulfate (blue dashed line with triangles), total sulfide 
(black solid line with squares), total alkalinity (brown dotted line with crosses), sulfate reduction 
rates (SRR, green bars) and methane (pink dash-dotted line with circles). The red rectangle 
provides a zoomed in sulfate profile at 395 days (final measurement point). Initial conditions were 
measured in a replicate core before the start of the SOFT system.  
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3.3 Response time of sulfate reduction activity in the SOFT sediment cores and 

sediment slurries 

The temporal development of sulfide in both the sediment-oil slurries and the SOFT cores 

from NAMV and Eckernfoerde Bay sediments was used to estimate the response time (Fig 

9). The response time was defined as the time required for the first steep increase in sulfide 

concentration to occur. In the sediment slurries, direct observation of the sulfide data was 

used to estimate the response time of sulfate reducers to petroleum addition (Fig. 9). 

Response time of sulfate reduction in sediment slurries from Eckernfoerde Bay and NAMV 

were around 100 and 16 days, respectively (Fig. 9). For the SOFT cores, the sulfide 

concentrations were integrated over the entire length of the core for each time point. The 

integrated sulfide concentrations were then normalized by their respective maximum 

values and plotted over time (Fig. 8). The response time for the NAMV sediment core to 

petroleum addition was estimated to be somewhere between 0 and 44 days (Fig 8). 

Compared to the NAMV core, the response time was at least three times higher in both 

Santa Barbara and Eckernfoerde Bay sediment cores (around 130 days ).  

 

 

Figure 8. Response time of sulfate reduction in the SOFT cores after the start of petroleum seepage. 
Y-axis represents integrated sulfide concentrations (over depth) that are normalized by their 
respective maximum values (Ic). The x-axis represents the number of days since the start of the 
SOFT experiment. The appearance of first steep increase in Ic indicates the response time of the 
individual sediment core to petroleum seepage. 
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Figure 9. Temporal development of sulfide production in sediment-oil slurries from the 
Eckernfoerde Bay (solid line with triangles) and NAMV (solid line with circles). The sediment 
slurries were prepared with anoxic sulfate-reducing medium with 1:7 dilution (sediment: 
seawater). 0.6% and 1% v/v light crude oil from North Sea was added to the sediment slurries of 
Eckernfoerde Bay and NAMV, respectively. No oil was added to the control treatments (dashed lines 
with corresponding symbols).  

 

3.4 Methanogenic zone in the SOFT system 

Porewater concentrations of methane and its respective δ13C analysis indicated a microbial 

methanogenic zone below the sulfate reduction zone at the Santa Barbara and 

Eckernfoerde Bay sites (Fig. 6, 7). Methane concentrations started to increase below 8 cm 

in the Santa Barbara indicating methanogenesis. Methane concentrations in the initial 

Santa Barbara core were in the range of 18 to 120 µM with a peak at 8.5 cm (Fig. 6, 10). In 

the SOFT core, methane concentrations increased over depth to a maximum of 260 µM at 

13 cm. The δ13 C signal of methane in the initial core was in the range of -50 to -55 ‰ and 

decreased to 58 to -63 ‰ in the SOFT core (Fig. 10). In the Eckernfoerde Bay core, 

methane concentrations started to increase below 12 cm in the Eckernfoerde Bay core 

indicating methanogenesis. Methane concentrations in the initial Eckernfoerde Bay core 

increased over depth to a maximum of 907.9 µM at 18.5 cm (Fig. 7, 10). In the SOFT core, 

methane concentrations also increased over depth but to a maximum concentration of only 

507.8 µM at 18.5 cm. The δ13 C signal of methane in the Eckernfoerde Bay SOFT core was in 

the range of -53 ‰ to -68 ‰ (Fig. 10). 
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Figure 10.  δ13C of methane (black solid line with triangles) and methane concentration (red 
dashed line with circles) in the initial and final cores of Eckernfoerde Bay (A) and Santa Barbara 
Channel (B). Some δ13C values are missing for some depths because the methane concentrations 
were too low for analyses. The δ13C values in the initial the Eckernfoerde Bay core are missing. 

 

3.5 16S rRNA phylogenetic study in NAMV 

16S rRNA pyrosequencing revealed a high diversity of sulfate-reducing bacteria (SRB) in 

the NAMV sediments in both the initial and SOFT sediments. Sequences belonging to the 

phylum Proteobacteria were most dominant in both the initial and SOFT sediments. Within 

Proteobacteria, Deltaproteobacteria and Gammaproteobacteria were the major classes. The 

relative sequence abundance of Gammaproteobacteria were lower in the SOFT core 

compared to the initial core. For example, in the initial NAMV core the relative sequence 

abundance of Gammaproteobacteria was around 60% at 6 cm only about 10% in the SOFT 

core (Fig. 11). Nevertheless, the relative sequence abundance of gammaproteobacterial 

Marinobacter increased in the SOFT core compared to the initial core. For example, portion 

of Marinobacter-related sequences retrieved from the deepest layer (20 cm) remarkably 

increased from about 5% (of total Gammaproteobacteria sequences) in the initial core to 

about 30% in the SOFT core.  

For Deltaproteobacteria, both initial and SOFT core showed a high relative sequence 

abundance (about 20-90% of total sequences). For 10-20 cm deep layers relative 
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abundance did not differ remarkably between NAMV initial and SOFT core; however, 

deltaproteobacterial sequences were more frequently retrieved from the upper SOFT core 

layers (20-30% deltaproteobacterial sequences of total sequences from initial core vs. 50 -

90% from SOFT core). The order Desulfobacterales comprised more than half of the total 

Deltaproteobacteria in both the SOFT and initial cores. Desulfobacula, SEEP-SRB1 and 

Desulfosarcina were among the major genera that were detected within the 

Desulfobacterales order (Fig. 12). The relative sequence abundance of SEEP SRB 1 were 

lower in the SOFT core compared to the initial core. It decreased from 32 % (within the 

order Desulfobacterales) at 4 cm in the initial core to 15 % in the SOFT core, whereas 

Desulfobacula spp. increased from 27 % in the initial core to 35 % in the final core (Fig. 12). 

At the same depth, the relative abundance of Desulfosarcina spp. doubled from 2 % in the 

initial core to 4 % in the SOFT core. 

 

Figure 11. Relative sequence abundance of Deltaproteobacteria and Gammaproteobacteria in the 
initial (bars with lines) and SOFT cores (solid bars) of NAMV.  
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Figure 12. Relative sequence abundance within the order Desulfobacterales in the initial and SOFT 
cores of NAMV.  

 

Vertical succession of n-alkane migration and degradation  

Volatile short-chain n-alkanes (C1 to C6) and higher n-alkanes (C10 to C38) were measured 

in the sediment cores after the end of the SOFT experiment (Fig. 13, 14, 15, 16). Later, for 

better visulalization of data, the n-alkanes will be grouped into four categories according to 

increasing chain length (Group 1 = C10 and C12, Group 2 =  C14 and C16, Group 3 = C16 to 

C30, Group 4 = C32 to C38). 

In the NAMV and Santa Barbara sediment cores, the volatile n-alkanes (C2 to C6) were 

completely degraded during the upward migration of petroleum within the top 5 cm of the 

sulfate reduction zone (Fig. 13). In the NAMV core, there were two peaks of high 

concentrations of n-alkanes. A small peak between 5 and 9 cm and another bigger peak 

between 11 and 17 cm. In the Eckernfoerde Bay core, the volatile n-alkanes (C2 to C6) were 

depleted throughout the core except for an increased peak between 5 and 10 cm. The 

absolute concentrations of pentane and hexane were much higher in the Santa Barbara 

core (~ 1000 µM) compared to the NAMV and Eckernfoerde Bay cores (~500 µM) (Fig. 13).  

At all three sites, the highest amounts of C10 to C38 n-alkanes were found in deeper layers 

(Fig. 14, 15, 16). However, in the Eckernfoerde Bay core, there was a higher peak of n-
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alkane concentrations at 6.5 cm (Fig. 16). The concentrations of the n-alkanes in all the 

three cores progressively decreased towards the surface (Fig. 14, 15, 16). The relative 

decrease in the concentrations of the higher n-alkanes (C10 to C38) at a certain depth was 

calculated by normalizing them against their corresponding maximum concentration at a 

deeper layer by the formula (1) 

[n-C x cm / n-C z cm ] × 100                                                              (1) 

where “n-C x cm” and “n-C z cm” are the concentrations of n-alkanes at a certain depth and the 

depth with the highest amount of n-alkanes, respectively (Mishra et al., sumbitted). In the 

NAMV core, the highest amount of n-alkanes was found at 17 cm (Fig. 14). From 17 cm to 

15 cm, C10 and C12 n-alkanes decreased by 90 to 100% . C14 and C16 decreased by ~40% 

and 15%, respectively. N-alkanes > C18 only decreased by around 10% between 17 to 15 

cm. In Santa Barbara core, the maximum concentration of n-alkanes was found at 13 cm 

except C10 which was the highest at 14.5 cm (Fig. 15).  All the n-alkanes decreased by 

around 50 % or more between 13 cm and 9 cm. Throughout the Eckernfoerde Bay core, 

very low concentrations of n-alkanes were found (Fig. 16). Two peaks of relatively high 

concentrations were observed at 6.5 cm and 18.5 cm (deepest layer). From 18.5 to 17.5 cm, 

C10 and C12 n-alkanes decreased by 100% and ~ 90%, respectively, and C14 to C38 n-

alkanes decreased by around 70%. From 17.5 cm onwards there  was a progressive 

decrease until 14 cm. However, from 12 cm onwards, there was a slight increase in 

concentration up to 7 cm. From 7 cm onwards there was again a successive decrease in the 

concentration towards the surface with almost 100% depletion of all the n-alkanes. Among 

the three sites, the highest absolute concentrations of n-alkanes were found in the Santa 

Barbara core (maximum concentrations measured about 355 ng mg-1 sediment). In NAMV 

and Eckernfoerde Bay, the highest concentrations of n-alkanes was about 90 ng mg -1 

sediment. 

In order to control if the relative decrease of n-alkanes was not just a function of 

incomplete upward migration of petroleup, the relative contribution of an individual n-

alkane to the total n-alkanes was calculated. The relative contribution was calculated by 

dividing the concentration of an individual concentration by the sum of concentrations of 
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all the n-alkanes (refered as total n-alkanes from here on) at every depth. Accordingly,  

contribution of the individual groups (see above, Group 1, 2, 3 and 4) to the total n-alkanes 

was calculated (Fig. 17).  In contrast to the Eckernfoerde Bay and Santa Barb ara core, 

where the C10-C12 group reached all the way up to 5 cm until they were depleted, the C10-

C12 group was already completely consumed between 17 and 15 cm in the NAMV core. The 

C14-C16 group also remained more or less unchanged in the Santa Barbara and the 

Eckernfoerde Bay core until 5 cm, from where they started depleting towards the surface. 

In the NAMV core, the C14-C16 group showed one peak at 17 cm from where it started 

decreasing upwards and then again another peak at 9 cm from where it also started 

decreasing towards the surface. The most persistent group in the total n-alkanes was the 

C18-C30 group, which domninated until the surface in all the cores. The C32-C38 group 

comprised the smallest part of the total n-alkanes and did not show any specific trend over 

depth.  
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Figure 13. Vertical distribution of volatile n-alkanes (from C1 to C6: Methane, Ethane, Propane, , i-
Butane, n-Butane, Pentane and Hexane) over depth in the SOFT cores of NAMV (black hashed line 
with triangles), Santa Barbara Channel (red dotted line with circles) and Eckernfoerde Bay (blue 
solid line with diamonds) at the end of the SOFT experiment. The table at the right corner gives the 
approximate length of the sulfate reducing zone (SR zone) and the methanogenic zone (MG zone) in 
the SOFT cores. n.d = not detected 
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Figure 14. (Left) Vertical distribution of higher hydrocarbons (n-alkanes C10 to C38) in the NAMV 
core after the SOFT experiment. Surface sediment (0-1 cm) is excluded, due to possible influence 
from the overlaying oil slick that settled on the sediment during slicing of the core (see text). (Right) 
Relative decrease in the concentration of n-alkanes over depth. The relative concentrations are 
normalized against the deepest layer with the maximum concentration (17 cm). The red line shows 
the ratio of the weight of petroleum extract at each depth to the respective sediment weight and 
represents the movement of petroleum in the SOFT core.  
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Figure 15. (Left) Vertical distribution of higher hydrocarbons (n-alkanes C10 to C38) in the Santa 
Barbara core after the SOFT experiment. Surface sediment (0-1 cm) is excluded, due to possible 
influence from the overlaying oil slick that settled on the sediment during slicing of the core (see 
text). (Right) Relative decrease in the concentration of n-alkanes over depth. The relative 
concentrations are normalized against the deepest layer with the maximum concentration (15 cm). 
The red line shows the ratio of the weight of petroleum extract at each depth to the respective 
sediment weight and represents the movement of petroleum in the SOFT core.  
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Figure 16. (Left) Vertical distribution of higher hydrocarbons (n-alkanes C10 to C38) in the 
Eckernfoerde core after the SOFT experiment. Surface sediment (0-2 cm) is excluded, due to 
possible influence from the overlaying oil slick that settled on the sediment during slicing of the 
core (see text). (Right) Relative decrease in the concentration of n-alkanes over depth. The relative 
concentrations are normalized against the deepest layer with the maximum concentration (18.5 
cm). The red line shows the ratio of the weight of petroleum extract at each depth to the respective 
sediment weight and represents the movement of petroleum in the SOFT core. 

 

Figure 17. Relative contribution of individual n-alkanes to the total concentration of all measured 
n-alkanes at different depths. At every depth, the concentration of each individual n-alkane is 
divided by the concentration of total n-alkanes. For better visualization, the n-alkanes are grouped 
into four categories according to increasing C number (Group 1: C10 and C12; blue, Group 2: C14 
and C16; red, Group 3: C18 – C30; green, Group 4: C32 – C38; purple).   
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4. Discussion 

4.1 Sediment properties and migration of petroleum 

Petroleum is made up of thousands of hydrocarbons. Presence of petroleum hydrocarbons 

leads to enrichment in organic carbon in marine sediments (Bauer et al., 1988). An upward 

flux of organic matter from deeper sources is a typical feature of marine seep sediments in 

contrast to non-seep sediments where the organic matter input is received from the water 

column above (Reed & Kaplan, 1977; Bauer et al., 1988).  In the SOFT cores of all three sites 

NAMV, Santa Barbara, and Eckernfoerde Bay, the vertical profile of Corg aligned with the 

vertical profile of the petroleum extract weight (Fig. 2), indicating that the organic 

enrichment of the SOFT cores was a result of petroleum seepage. However, the C/N ratio in 

the fine grained sediments of Eckernfoerde Bay and NAMV was considerably lower than in 

the sandy Santa Barbara core. This difference could be due to the relatively higher organic 

nitrogen content in the Eckernfoerde Bay and NAMV sediments compared to the Santa 

Barbara sediment (Fig. 2) or the relatively lower amount of petroleum measured in the 

sediments compared to the Santa Barbara sediment (section 3.5, Fig. 14, 15, 16). 

Eckernfoerday Bay sediment is known to have a constant C/N ratio around 9 (by weight) as 

the organic carbon profiles of the sediment mostly corresponds the organic nitrogen (N) 

profile (Whiticar, 2002). Therefore, only a slight increase in the C/N ratio was observed as 

a result of petroleum addition (highest ratio being around 20 at 6.5 cm). In contrast to that, 

high C/N ratios up to 140 to 280 were observed in the Santa Barbara core, which was 

closer to the C/N ratio of petroleum (~170; Hunt, 1979). As the N content in the Santa 

Barbara core was very low (Fig. 2), it can be assumed that the increased organic carbon 

content and respective C/N ratio over depth was purely a result of petroleum addition. 

Increased organic carbon enrichment and C/N ratio over depth has also been observed in 

other studies on natural petroleum seeps from Santa Barbara and Gulf of Mexico (Bauer et 

al., 1988; LaMontagne et al., 2004) and Caspian sediment core in the SOFT system (Mishra 

et al., submitted).  

In the Santa Barbara and NAMV cores, the porosity decreased over depth compared to the 

initial core while only a slight decrease was observed for the the Eckernfoerde Bay core. 
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We generally explain a decrease in porosity by the incomplete removal of petroleum (non -

volatile fraction) during the freeze drying of the porosity analysis (Mishra et al, submitted). 

In the Santa Barbara core, the porosity at 13 cm decreased by half from 0.39 in the initial 

core to 0.16 in the SOFT core. Whereas in the fine-grained NAMV, the porosity only 

decreased by around 10 % at the deeper layers. The larger decrease in porosity in the Santa 

Barbara core could be due to the higher permeability of sand, which allows a fast passage 

of oil (Bjorlykke, 2010), combined with an already much lower pore space compared to the 

other sites. In Eckernfoerde Bay core, there was little change in the porosity and most of it 

was in the shallower depths (Fig. 2), which could be due to its fine grained sediment that 

does not allow the oil to permeate through the pore space that easily. A potential reason 

why the shallower depths in the Eckernfoerde Bay core seemed to be affected the most 

could be due to oil moving through polychaete burrows and accumulating somewhere 

further up in the sediment core (indicated by a peak in the petroleum extract between 6 

and 10 cm), which might have led to decrease in the porosity mostly in the shallower 

depths. Movement of methane gas through burrows in the sediments of Eckernfoerede Bay 

has been described by Abegg & Anderson (1997) and Treude et al., (2005).  

4.2 Penetration of oxic zone during petroleum seepage 

Total oxygen uptake (TOU) is an indicator of benthic carbon mineralization (Canfield et al., 

1993). Oxygen is the most favored electron acceptor in the benthic carbon degradation by 

aerobic bacteria and the reoxidation of reduced inorganic products from the anae robic 

bacteria (Glud, 2008). The diffusive oxygen uptake (DOU) represents the microbial 

utilization of oxygen at the seafloor. In our SOFT system, a constant aeration of the 

overlaying water in the SOFT core led to the estabslishment of an oxic zone in all the three 

sediment cores. As petroleum is the main organic carbon in our system, uptake of oxygen 

represents the aerobic microbial degradation of petroleum and its compounds in the SOFT 

cores. At the first meaurement timepoint since the start of  petroleum seepage, the aerobic 

microbial community were more active in Santa Barbara and NAMV sediments than in the 

Eckernfoerde Bay core i.e. the DOU in NAMV and Santa Barbara cores was 2 and 3 mmol m-

2 d-1, respectively, whereas it was only 1 mmol m-2 d-1 in the Eckernfoerde Bay core (Fig. 4). 
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The highest DOU measured was around 4 mmol m-2 d-1 at all the three sites. While highest 

DOU value of 4.3 mmol m-2 d-1 was seen after around 130 days since that start of petroleum 

seepage in the Eckernfoerde Bay core,  in the NAMV and Santa Barbara core the highest 

DOU was already seen within the first 90 days and 50 days, respectively. The lower DOU in 

the Eckernfoerde Bay core and the delayed response time (delayed increase in DOU) 

compared to the NAMV and Santa Barbara core might be explained by a low abundance of 

petroleum-degrading bacteria, as the site has no near-by petroleum seeps. It is known that 

degradation of petroleum in pristine sediments requires a longer lag phase than pre -

adapted sediments (Committee on Oil in the Sea, 2003). The oxygen penetration depth was 

the highest in the Santa Barbara core at around 8 mm and around 2 cm and 4 cm in NAMV 

and Eckernfoerde Bay core, respectively. In natural marine environment, coarse grained 

sediment like sand can have oxygen penetraion depths from 5 to 25 cm, whereas in fine-

grained sediments like mud and clay they are only a few millimeters deep (Bjorlykke, 

2010).  

4.3 Establishment of sulfate reduction zone and its response time to petroleum  

Establishment of an active sulfate reduction zone was indicated in all the three cores by 

decreasing sulfate concentrations and increasing sulfide and alkalinity over depth and 

increased sulfate reduction rates (Fig 5, 6, 7). At all the three sites, petroleum seepage led 

to increased sulfate reduction activity indicating degradation of petroleum by sulfate-

reducing bacteria (SRB). Presence of petroleum degrading SRB in the NAMV sediment core 

was further confirmed by phylogenetic studies (see section 4.4). 

The high sulfide production and increased alkalinity in the NAMV SOFT core indicate 

degradation of petroleum by SRB via sulfate reduction. Although the direct measurement of 

sulfate reduction rates from the NAMV SOFT core are not available, we assume an increase 

after the petroleum seepage because of the high sulfide production and increased 

alkalinity. It should be noted here that before the start of the SOFT experiment, the NAMV 

core was stored for 5 years at 0 °C and all sulfate reduction activity would had probably 

stopped by the time we started the SOFT experiment. Therefore, an increased sulfate 

reduction activity must have been likely due to the petroleum seepage.   
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Integrated sulfate reduction rates in the initial Santa Barbara core were about 0.4 mmol 

SO42- m-2 d-1 (0-9 cm). These rates are lower compared to sulfate reduction rates measured 

in sediments from a nearby gas seep at the Brian Seep area in the Santa Barbara Channel 

that were in the range of 1.4 to 3.6 mmol SO4 2- m-2 d1 (integrated over 0 to 10 cm) (Treude 

& Ziebis, 2010). However, upon subjection to the petroleum seepage, there was almost a 

250 fold increase in the sulfate reduction rates in the Santa Barbara SOFT core compared to 

the intial core. The integrated sulfate reduction rates increased from 0.4 mmol SO4 2- m-2 d-1 

in the initial core upto about 95.2 mmol SO4 2- m-2 d -1 in the SOFT core indicating sulfate 

reduction related to petroleum degradation. 

Since sulfate reduction rates of the initial Eckernfoerde Bay sampling are not available, we 

compare with rates from another study (Bertics et al., 2013), from the identical sampling 

location and a corresponding sampling month (November). The integrated sulfate 

reduction in the Eckernfoerde Bay SOFT core were ca. 22 times higher than integrated 

rates measured by Bertics et al., (2013) between 0 and 18 cm (~7.5 mmol m-2 d-1), 

indicating increased activity of sulfate reducers due to petroleum seepage.  It should be 

noted that we observed high sulfate reduction activity in the Eckernfoerde SOFT below 8 

cm, i.e., in the methanogenic zone, where the sulfate was very low (up to 180 nmol cm-3 d-1 

at 200 to 400 µM sulfate). Sulfate reduction activity at very low sulfate concentrations in 

the methanogenic zone of marine sediments has been reported before (Holmkvist et al., 

2011; Treude et al., 2014). In sediment cores from the Aarhus Bay in the Baltic Sea, this 

phenomenon was explained by the presence of a “cryptic sulfur cycle” where sulfate is 

formed from reoxidation of the downward diffusing sulfide by buried iron (Holmkvist et al., 

2011). Presence and activity of sulfate-reducing bacteria was also confirmed in the 

methanogenic sediments of the Aarhus Bay (Leloup et al., 2009; Holmkvist et al., 2011). In 

sediment cores from the Alaskan Beaufort Sea continental margin, sulfate reduction rates 

in the methanogenic zone were explained by potential complex sulfur cycling consisting of 

sulfur oxidation and sulfur disproportionation by iron and manganense (Treude et al., 

2014). However, in our SOFT core, the sulfate reduction activity was one to two orders of 

magnitude higher compared to the previous studies despite a similar range of sulfate 

concentrations. We therefore speculate that the reason for such high activity were rather 
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experimental proedures, which might have caused slight intrusion of sulfate -rich 

porewater. Five days before the cores were sliced for sulfate reduction rate incubations 

and different analyses, porewater was extracted from the rhizons, which likely caused the  

drawdown of seawater from the supernatant and hence a smoothening of the sulfate 

profile. Furthermore, right before slicing the SOFT core, the rhizons that were permanently 

fixed to the cores had to be removed, which could have led to additional mixing of sulfate-

rich porewater from the top to the deeper layers which could have triggered the high 

sulfate reduction activity. Addition of sulfate and some carbon sources like lactate and 

acetate, could also stimulate high sulfate reduction activity (a 10 to 40 fold increase in 

sulfate reduction rates) in sediments of the otherwise sulfate-limited methanogenic zone of 

the Aarhus Bay (Holmkvist et al., 2011).  

Because of the different hydrocarbon seepage history of the three different sites, we 

expected a difference in the response time of microbial activity (sulfate reduction). We 

assumed sediments that were subjected to nearby hydrocabron seeps have a shorter 

reponse time to petroleum seepage than the pristine sediment. In this study, sediment 

cores form NAMV and Santa Barbara are considered to be pre-adapted to hydrocarbon 

because of the nearby hydrocarbon seeps, whereas the sediment core from Eckernfoerde 

Bay was considered to be pristine without any prior subjection to natural or anthropogenic 

petroleum hydrocarbons. Based on the temporal development of sulfide production, the 

NAMV core had the shortest response time to petroleum addition, i.e., it had the shortest 

lag phase of sulfate reduction activity (Fig. 8). The onset of sulfate reduction activity must 

have taken place between 0 and 44 days  (Fig. 8). The response time of sulfate reduction 

activity in the Eckernfoerde Bay core was around 130 days. Unexpectedly, the response 

time of sulfate reduction activity in the Santa Barbara core was much longer (also around 

130 days as in the Eckernfoerde Bay sediment) although it was assumed to be a pre -

adapted site due to the presence of nearby petroleum seepage (Hornafius et al., 1999).  

The response times of sulfate reducers to petroleum seepage in the SOFT cores were 

further compared to those of sediment-oil slurries. In the Eckernfoerde sediment slurries, 

the response time for sulfate reduction was around 100 days, whereas in the SOFT core it 
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was around 130 day (Fig 8 and 9). In the NAMV sediment slurries, the response time was 

between 0 and 16 days, whereas in the SOFT core it was between 0 and 44 days (Fig 8 and 

9). A direct estimate cannot be made between the NAMV slurries and SOFT core, because 

intermediate data between 0 and 44 days are missing for the SOFT core and the exact time 

of the first appearance of the sulfide peak cannot be interpolated. However, the comparison 

between the response times in the sediment slurries and the SOFT core from Eckernfoerde 

Bay throws light on the comparability of results obtained in a batch culture compared to a 

quasi-in situ condition while investigating petroleum degradation in marine sediments. 

The SOFT system is designed to maintain most of the natural physical and biogeochemical 

conditions in the sediment including heterogeneity and microniches (Mishra et al., 

submitted). Whereas in the sediment-oil slurries, conditions were homogenized and 

diluted. It is known that homogenization of sediments enhances degradation rates by 

reducing the distance between the microbial cells and their substrate (Harms & Bosma, 

1997). Harms and Bosma (1997) presented the comparative results from studies o f 

Zehnder and coworkers (Bachmann et al., 1988; Doelman et al., 1990; Huntjens et al., 1988; 

Rijnaarts & Bachmann, 1990) on bioremendiation of soil contaminated with α-

hexachlorocyclohexane (α-HCH) that showed that degradation is highly enhanced in 

homogenized sediment slurries compared to in situ degradation but is limited by 

desorption (Bachmann et al., 1988; Huntjens et al., 1988; Doelman et al., 1990; Rijnaarts & 

Bachmann, 1990; Harms & Bosma, 1997). To the best of our knowledge, the current study 

is the first study that provides a comparison between degradation of petroleum by sulfate -

reducing bacteria in a natural (intact) sediment core and a homogenized sediment slurry 

under comparable conditions. Compared to their respective sediment-oil slurries, the 

response time of sulfate reduction in the Eckernfoerde Bay SOFT cores were around 30% 

longer.  

4.4 Petroleum degrading sulfate reducers in North Alex sediments 

Many known groups of hydrocarbon degraders belonging to the Deltaproteobacteria class 

were indentified in both the intial and SOFT core of NAMV. Within the Desulfobacterales 

order, toluene degrading Desulfobacula spp. sequences (Rabus, 1993) were relatively 
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abundant in both the intial and SOFT core without much change before or after the 

petroleum seepage but the relative sequence abundance of SEEP-SRB1 cluster decreased in 

the SOFT core compared to the initial core. SEEP-SRB1a  of the SEEP-SRB1 cluster is known 

to be a consortium partner of ANME-1 and ANME-2 involved in anaerobic methane 

oxidation (Knittel et al., 2003; Niemann et al., 2005). ANME-2 has been reported as one of  

the dominant methanotroph group in the NAMV seep sediments (Omoregie et al., 2009). If 

the SEEP SRB sequences detected in our SOFT core belonged to SEEP-SRB1a, a potential 

explanation for their relatively higher abundance of sequences in the intial core could be 

that they were present in consortium with the ANME-2. However, after the NAMV sediment 

core was dominated by an oil system (the SOFT core did not have a methanogenic zone and 

the petroleum used had < 1% methane), the relative sequence abundance of SEEP-SRB1 

could have decreased in the sediment core due to the lack of methane supply and 

consequently, the absence of anaerobic oxidation of methane. While less abundant (~2%) 

in the initial core, the relative sequence abundance of Desulfosarcina spp. increased in the 

SOFT core (to ~6%). Desulfosarcina spp. is widely assocciated with marine seeps and some 

of its isolates are reported to be involved in degradation of short chain alkanes like butane 

and propane (Kniemeyer et al., 2007). Next to Deltaproteobacteria, the most abundant 

sequences belonged to the class Gammaproteobacteria in the initial sediment core. 

Gammaproteobacteria related to iron oxidation, sulfide oxidation and methane oxidation 

have been reported in microbial mats above a brine seep in the nearby Chefren mud 

volcano of the Eastern Mediterranean basin (Omoregie et al., 2008). Within 

Gammaproteobacteria class, an increase in the relative sequence abundance of 

Marinobacter spp. was seen in the SOFT core compared to the intial core. Marinobacter spp. 

is a moderately halophilic bacteria that is associated with aliphatic and aromatic 

hydrocarbon degradation (Duran, 2010), which might explain its increase in abundance of 

Marinobacter spp. in the the SOFT core. The increase in the relative sequence abundance of 

various hydrocarbon degrading bacteria after the SOFT experiment along with the 

observed sulfate reduction activity supports that the microbial community of NAMV 

sediments is capable of petroleum degradation during its seepage. 
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4.5 Establishment of methanogenic zone below sulfate reduction zone 

In anoxic marine sediments, below the sulfate reduction zone where the sulfate is 

completely depleted, where CO2 is the only electron acceptor available, degradation of 

organic matter is done by methanogenic archaea (methanogens) resulting in the formation 

of methane (Jorgensen, 2006). In the sulfate-reducing zone, sulfate reducers outcompete 

methanogens due to their better affinity for the mutual competetive substrates like H 2 and 

acetate, therefore, methanogens are mostly restricted to the methanogenic zone where 

sulfate is depleted (Oremland & Polcin, 1982). However, in the presence of non-

competetive substrates like methyl amines, methanogens can also use those compound s 

and coexist with the sulfate reducers (Oremland & Polcin, 1982). Although methanogenic 

degradation of easiy degradable organic compounds was known for a while, the possibility 

of methanogenic degradation of petroleum hydrocarbons was not recognized until recently 

(Zengler et al., 1999). So far, several laboratory batch cultures have been able to 

demostrate degradation of petroleum hydrocarbons under methanogenic conditions (for 

example, Zengler et al., 1999; Jones et al., 2008; Jiménez et al., 2012). Methanogenic 

petroleum degradation was also seen in sediment cores from the Caspian Sea under natural 

conditions in a previous SOFT experiment (Mishra et al., submitted). 

SOFT cores from Eckernfoerde Bay and Santa Barbara revealed a methanogenic zone below 

the penetration of sulfate. The methanogenesis observed in the SOFT core could be 

potentially related to the degradation of petroleum. In the NAMV core, a methanogenic 

zone probably did not establish, as sulfate was present through the entire length of the core 

(Fig. 5). The methanogenic potential of the organic-rich Eckernfoerde Bay sediment is well 

known (Martens et al., 1999; Whiticar, 2002; Treude et al., 2005a; Krüger et al., 2005), 

resulting in methane build-up and gas ebullition. The methane produced is of biogenic 

origin with  δ13 C of methane in the range between -60‰ and -70‰ (Martens et al., 1999a; 

Whiticar, 2002). In the initial Eckernfoerde Bay core, high methane concentrations were 

found throughout the entire length of the sediment core (also when sulfate was still 

present) with concentrations as high as 907 µM (Fig 7). Concurrence of methanogenic and 
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sulfate reduction activity was found in the top 20 cm of Eckerfoerde Bay sediments, which 

was most likely fuelled by non-competitive substrates like methanol and methyl amines 

(Maltby, 2015). However, in the SOFT core, although low concentrations of methane 

(around 60 µM) were present until 10 to 12 cm, the first steep increase in methane 

concentration started only where the sulfate was nearly exhausted. This indicates that 

sulfate reducers outcompeted the methanogens in the use of petroleum and there was no 

non-competetive substrates available for the methanogens. The lower methane 

concentrations in the SOFT core (~507 µM) compared to the initial core (~907 µM) further 

indicates that the methanogens in the Eckernfoerde Bay sediment could be less efficient in 

using petroleum as a carbon source when compared to normal organic matter.  The δ13 C 

signal of methane in the Eckernfoerde Bay SOFT core was in the range of -53 ‰ to -68 ‰ 

indicating biogenic origin (Whiticar, 1999), which might be linked to biodegradation of 

petroleum. In the Santa Barbara core, methane concentrations increased from a maximum 

of 117 µM at 8.5 cm in the initial sediment core to 260 µM at 13 cm in the SOFT core. We 

assume that the methane in the initial core could be due to the presence of methane seeps 

around the area (Treude & Ziebis, 2010). However, by the time the cores were sampled 

(see section 2.1), some of the methane might have been consumed due to anaeorobic 

oxidation of methane. In the initial core, the δ13C signal of methane was around -51‰ to -

56‰ throughout the core, which is similar to values obtained from a nearby gas went (-

41‰ to -55 ‰, Treude & Ziebis, 2010). In the SOFT core, along with increasing 

concentrations of methane, a slight decrease in the δ13C signal of methane was seen, 

indicating microbial methane formation (Fig. 10). Since the initial organic carbon content 

was very low in the Santa Barbara core (Fig. 2), it is very likely that the methanogenesis 

observed in the SOFT system might be linked to the degradation of the seeping petroleum. 

As the cores were collected from a highly aerated shallow beach area, it is unlikely that 

there would have been an abundant methanogenic community present in the cores already. 

We rather suggest that the methanogenic community, which established after the 

petroleum seepage and the generation of an reduced environment, was recruited from a 

rare biosphere (Sogin et al., 2006). 
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4.6 Vertical succession of hydrocarbons 

Volatile n-alkanes of the petroleum (C1 to C6) were completely consumed in the upper 4 to 

6 cm of the sediment core at all the three sites (Fig 12). As the top 6 cm of the sediment 

cores was a part of the sulfate reduction zone in all the cores, we postulate that volatile n -

alkanes were degraded by sulfate reducers. Elevated sulfate reduction activity after 

petroleum seepage and depletetion of short chain volatile n-alkanes together indicate that 

petroleum in the SOFT was degraded by sulfate-reducing bacteria. Anaerobic degradation 

of short-chain n-alkanes have only recently been reported in sediments from marine seeps 

(Kniemeyer et al., 2007; Kleindienst et al., 2014). A high diversity of sulfate-reducing 

bacteria have been found in NAMV sediments in this study, which further supports the 

degradation of n-alkanes by sulfate reduction. In a sediment core from the Caspian Sea that 

was incubated in the SOFT system, a similar trend of depletion of volatile n-alkanes in the 

upper 4 cm of the sulfate reduction zone was observed (Mishra et al., submitted). The two 

peaks of n-alkanes in the Eckernfoerde Bay and the NAMV core between 6 to 10 cm could 

be due to pockets of oil trapped within the sediment during migration. The pockets of 

trapped oil is further indicated by a peak in the Corg profile between 6 and 10 cm in the 

Eckernfoerde Bay core. Since, the sediment sections were not homogenized while slicing 

the SOFT core, the natural heterogeneity should be kept in mind (in this case, a lateral 

heterogeneity within a section). And the lateral variability at each depth within a sediment 

section would be higher in less permeable sediments than sediments with high 

permeability due to easier flow of fluid, which would then favor a more even spread of oil 

as is seen in the Eckernfoerde Bay and the NAMV cores. The higher n-alkanes (C10 to C38) 

exhibited a progressive decrease towards the surface (Fig 13,14,15). From the deepest 

layer to the surface layer, 90 to 100% depletion was detected. Similar trends of vertical 

succession in petroleum degradation were observed in a sediment core from an oil seep off 

the coast of West Africa (Wenger & Isaksen, 2002), oil samples from a Coal Oil Point seep 

(Wardlaw et al., 2008), and a sediment core from the Caspian Sea used in the SOFT system 

(Mishra et al., submitted). Their studies and the present study report microbial degradation 
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as the most important process in altering the composition of the petroleum during its 

ascent from the reservoir to the sediment surface. Comparison of the relative contribution 

of individual n-alkanes to the concentration of total n-alkanes at each depth indicated a 

preferential degradation of shorter chain n-alkanes (Fig. 16) during the vertical ascent of 

the total n-alkanes. A preferential degradation of shorter n-alkanes (upto C14) was also 

found in the previous SOFT experiment with a sediment core from the Caspian Sea (Mishra, 

unpublished). However, the vertical distribution of the degradation pattern varied among 

the sediment cores of the current study (Fig. 16). For example, the C10 to C12 part of the 

total n-alkanes was completely depleted already within the ascent from 17 cm to 15 cm in 

the NAMV SOFT core. On the contrary, the C10-C12 group of the total n-alkanes remained 

more or less unchanged during the ascent in the Santa Barbara core and Eckernfoerde Bay 

core until about 5 cm. Similarly, the C14-C16 group only started to decrease after 6 to 7 cm 

in the the Santa Barbara core and Eckernfoerde Bay cores whereas a decreasing trend was 

seen already after 17 cm in the NAMV core. The different degradation patterns in the SOFT 

cores could be explained with the difference in the activity of sulfate reduction and their 

response times. The NAMV core had the highest activity (shortest response time and 

highest sulfide concentration) and the sulfate reduction zone present througout the core. 

This omnipresence of sulfate reduction might explain the rapid utilization of the lower 

chain n-alkanes already in the bottom part of the core. In the Santa Barbara and 

Eckernfoerde core, the highest sulfate reduction activity was found further up in the cores 

(Fig 6 and 7) and therefore, the shorter chain alkanes were probably degraded only after 

reaching the active sulfate reduction zone in these cores. The C18-C30 part of the 

petroleum during the vertical ascent was the most persistent group of the petroleum 

indicating their least preference by sulfate-reducing bacteria. It is well known that the 

susceptibility to degradation is dependent on the length of the chain of the n-alkanes, i.e. 

shorter chains are more suscpetible than longer chain n-alkanes (Wang et al., 1998). This is 

indicated in the present study where the microbial degradtion of C10 to C16 n-alkanes is 

preferred over their higher counterparts. 

 

 



Chapter 6. Comparative study of microbial petroleum degradation in marine seep vs. non-seep 
sediments in a simulated petroleum seepage 

 

153 
 

 

 

 

5. Conclusion 

The biogeochemical response of sediment cores from North Alex Mud Volcano, Santa 

Barbara Channel and Eckernfoerde Bay to simulated petroleum seepage was investiga ted 

in the SOFT system under close in situ conditions and the following conclusions were 

drawn.  

1. Our first hypothesis that petroleum seepage will affect the vertical distribution of 

redox processes, microbial community, and petroleum composition was confirmed by 

the successive change in petroleum composition over depth along with the temporal 

and spatial development of redox processes and microbial communities. We conclude 

that sulfate reduction is the most important anaerobic process that alters the 

composition of petroleum during its seepage in different kind of marine sediments. 

Short chain non-methane alkanes (ethane, propane, iso-butane, n-butance and 

pentane) were completely depleted in upper few centimeters of the sulfate-reducing 

zone.  

2. Our second hypothesis that sediment cores from Santa Barbara and NAMV respond 

faster to petroleum addition than the Eckernfoerde Bay core because of pre-

adaptation to nearby seepage could not be confirmed. Although NAMV indeed 

exhibited the fastest and highest activity in petroleum degradation, the lag phase of 

the Santa Barbara core was unexpectedly long. The response time of sulfate reduction 

for both, the Eckernfoerde Bay and Santa Barbara, was about 6 times longer (~130 

days) than NAMV (~20 days). Another cause of this delay could be that the anaerobic 

community is not well established at beach sediments, which are constantly exposed 

to oxygen and tidal action and therefore, the response time of the sulfate reducers is 

longer, despite the sediment being pre-adapted to the presence of hydrocarbon seeps. 

Nevertheless, it is noteworthy that in case of a potential petroleum contamination at a 

beach, it might take much longer than expected for the microbes to be able to degrade 

the hydrocarbons.  
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3. Our third hypothesis about the overestimation of microbial response in sediment 

slurries compared to intact sediment cores was confirmed. The response time of 

sulfate reduction activity during degradation of petroleum in sediment slurries was 

around 30 % faster compared to the SOFT system. Therefore, while studying 

bioremediation of petroleum-contaminated sediments in slurry based experiments, 

an overestimation of the effective time should be considered. By using the SOFT 

system, we could provide a more realistic response time of the petroleum degrading 

sulfate reducers compared to sediment slurries. In investigating bioremediation in 

sediments, we suggest the use of experimental set ups that can facilitate more of the 

natural heterogeneity of the samples in order to get more realistic results. 

4. The present study shows that even in oxygenated beach sediments, methanogenesis 

linked to petroleum degradation could take place by methanogenic archaea from a 

rare biosphere. Once their environment turns anoxic and reduced under petroleum 

contamination, methanogens from the rare biosphere might establish and get 

involved in the anaerobic degradation of petroleum. 
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Appendix for Chapter 6 

 

Appendix 1. pH in SOFT cores at their respective first measurement point since the start of the 
SSOFT experiment. 

NAMV 
  

Santa Barbara 
 

Eckernfoerde Bay 

Depth 
[cm] pH 

Depth 
[cm] pH Depth [cm] pH 

0 8.0 0 7.5 0 6.9 
1 7.3 1 7.2 1 6.4 
2 7.1 2 7.3 2 6.9 
3 7.2 3 7.2 4 7.2 
4 6.9 4 7.5 6 7.7 
5 6.8 6 7.3 8 8.0 
7 6.9 8 7.3 10 8.1 
9 6.9 10 7.4 12 8.2 

11 7.0 
  

14 7.9 
13 7.0 

  

16 8.0 
15 7.1 

  

18 7.9 
17 7.2 

    19 7.2 
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Figure 9. Temporal development of total alkalinity in sediment-oil slurries from Eckernfoerde Bay. 
The sediment slurries were prepared with sulfate-reducing medium (dilution 1:7, sediment: 
seawater). 0.6% light crude oil from North Sea was added to the sediment slurries of Eckernfoerde. 
Control treatments were without any addition of crude oil. 
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Preface 

 

This dissertation focuses on the geochemical and microbial dynamics of marine sediments 

that are subjected to petroleum seepage. New insights are provided into the 

biogeochemical response of different marine sediments to petroleum seepage and the fate 

of petroleum at marine seeps. 

The study was conducted on: 

1. Sandy sediments from a beach at the Caspian Sea, the largest enclosed basin on 

earth, known for its hydrocarbon reserves.  

2. Fine grained sediments from the North Alex Mud Volcano, an active gas chimney 

associated with methane and gas emissions in the Eastern Mediterranean.  

3. Sandy sediments from a beach at the Santa Barbara Channel; near the Coal Oil Point 

seep field (intense seep area)  

4. Fine grained gassy and organic rich sediments from Eckernfoerde Bay in the Baltic 

Sea 

The following sections will provide a brief summary and discussion of the work with their 

respective conclusions, and an outlook for future research at the end. 

 

1. The SOFT system vs. sediment slurries, a better way to predict in 

situ processes? 

Petroleum seeps are naturally occurring steady state chemostats that can act as excellent 

laboratories for investigating petroleum degradation in the marine environment 

(Hornafius, 1999; Wardlaw et al., 2008). Since most laboratory based studies on 

hydrocarbon degradation are done classically by the use of sediment slurries, the natural 

effect of a seep with respect to its flow, sediment heterogeneity and microniches, redox 

gradients etc. is not considered. Therefore, in this study, a continuous sediment-oil-flow-

through (SOFT) system was designed that could use intact sediment cores to save the 
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natural heterogeneity and simultaneously maintain other environmental parameters close 

to in situ conditions. The system was used to comprehensively study the degradation of 

petroleum during its seepage in different marine sediments under quasi in situ conditions 

of a seep. 

We hypothesized that the use of the SOFT system would provide a better understanding of 

the in situ petroleum degradation in marine sediments compared to the traditional use of 

sediment slurries. The hypothesis was confirmed by comparing the results from the SOFT 

system to results from sediment slurries where an overestimation of the microbial 

response to petroleum was seen (Chapter 6, section 3.3; Fig. 8 and 9). In sediment-oil 

slurries prepared with sediments from the Eckernfoerde Bay and sulfate rich anoxic 

artificial seawater medium, the onset of sulfate reduction activity (indicated by sulfide 

production) was seen after about 100 days. However, in the SOFT system, where an intact 

sediment core from the same location was used under similar environmental conditions 

(for example, temperature and type of crude oil), sulfate reduction activity was seen after 

about 130 days. Therefore, compared to the SOFT core, there was an overestimation of the 

microbial response in the sediment slurries. Furthermore, the SOFT system enabled not 

only the temporal monitoring of sulfate reduction activity but also the spatial monitoring of 

the sulfate reducing zone (distribution over depth) in the sediments in response to 

petroleum seepage. For example, the highest sulfate reduction in the Eckernfoerde Bay 

SOFT core was seen after 297 days between 5 and 12 cm. In contrast to the SOFT system, 

the effect of the vertical redox ladder of the marine sediments could not be included in the 

homogenized sediment slurries.  

In conclusion, the present study suggests that the use of the SOFT system has an advantage 

over the use of sediment slurries in investigating in situ hydrocarbon degradation because 

several geochemical factors for example, the vertical redox cascade, the natural penetration 

of electron acceptors from the overlaying seawater into the sediment, and the sediment 

heterogeneity can be included in it in contrast to the sediment slurries.  
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2. Which are the major processes responsible for petroleum 

degradation along its natural migration pathway in marine seeps? 

 

In seep sediments, the organic matter flux is from below, unlike non seep sites where the 

organic matter deposition takes place from above, through the overlaying water column. 

Some features like increasing organic carbon content and C/N ratios over depth are typical 

to marine seeps. As the deep marine sediments are largely anoxic, it should be expected 

that the anaerobic degradation of petroleum would be the most important process at 

marine seeps. However, the focus on the investigation of anaerobic degradation of  

petroleum is a relatively recent field (Widdel et al., 2010). Despite the increasing number of 

studies, there is still a gap in the knowledge of in situ degradation.  

A vertical zonation of different redox processes was observed in the sediment cores 

undergoing petroleum seepage that was in line with the natural redox ladder of marine 

sediments. Sulfate reduction and methanogenesis were identified to be two major 

anaerobic processes involved in the in situ degradation of petroleum in marine sediments 

(see Table 1 for details). Distinct methanogenic zone, sulfate reducing zone and oxic zones 

were found during ongoing petroleum seepage in the sediment cores. Sulfate reduction 

rates increased after the onset of petroleum seepage at all sites, indicating the us e of 

petroleum hydrocarbons by sulfate reducing bacteria (SRB) (see table 1 for details). This 

was further supported by the observed decrease in the concentrations of hydrocarbons, 

and the detection of sulfate reducing bacteria in the sediments (to be discussed in the 

following sections). Sulfate reduction was identified to be the most important process at all 

sites as most of the alkanes were degraded within this zone even before reaching the 

energetically more favorable oxic zone.  In sediments from the Caspian Sea, the Santa 

Barbara Channel, and the Eckernfoerde Bay, a methanogenic zone was detected below the 
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sulfate reducing zone. The δ13C signal of methane revealed biogenic methane formation at 

the three sites. For the Caspian Sea sediments, the biogenic methane formation could be 

linked to degradation of petroleum hydrocarbons through enrichment culturing of 

sediments from the methanogenic zone with substrates like hexadecane, 

methylnaphthalene, ethylbenzene and toluene as substrates. The highest rates of 

methanogenesis were found for hexadecane and methylnaphthalene (13.8 and 10.8 nmol -1 

ml-1d-1 sediment, respectively). However, enrichment culturing with the sediments from 

the sulfate reducing zone also exhibited comparable rates of methanogenesis (16.7 and 

12.8 nmol-1 ml-1d-1 sediment, respectively) which was not in line with the observation in 

the SOFT core. In the SOFT core, no methanogenesis was detected in the sulfate reducing 

core, indicating that in nature sulfate reducers outcompete the methanogens in the 

utilization of petroleum hydrocarbons as substrates.  

In conclusion, we suggest that sulfate reduction is very likely the most important process in 

the degradation of petroleum at marine hydrocarbon seeps. Within the anoxic zone, sulfate 

reduction dominates over methanogenesis in the anaerobic oxidation of petroleum 

compounds, and most of the compounds get largely depleted within this zone even before 

they reach the energetically favorable oxic zone at the sediment surface.   
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3. What is the succession of petroleum degradation along its natural 

migration pathway in marine seeps? 

 

In general, we observed a step-wise progressive decrease in the amount of n-alkanes from 

the bottom of the core towards the sediment surface at all sites in the SOFT experiment 

(Chapter 4, Fig. 8; Chapter 6, Fig. 14, 15 and 16). In some cases there were peaks of n -

alkane amounts in the middle of the cores, which could be attributed to pockets of trapped 

oil in some parts of the sediment layers as the sediments were not homogenized before 

sampling for oil analyses. However, at all sites the amount of n-alkanes tended to decrease 

towards the surface indicating degradation of petroleum during its vertical ascent. 

Furthermore, by comparing the contribution of the individual n-alkane amount to sum total 

amount of all n-alkanes, we observed a preferential degradation of lower chain n-alkanes 

(among C10 to C14 compared to C16 to C30 alkanes) during the upward migration of 

petroleum (Chapter 4, Fig. 9; Chapter 6, Fig, 17).  

Increased sulfate reduction activity (previous section) and detection of alkane degrading 

sulfate reducers (next section) suggested that anaerobic microbial degradation of 

petroleum was responsible for the observed decrease in n-alkane amounts. The mid- to 

long chain n-alkanes (C10 to C40) started to decrease already within the bottom few 

centimeters of the core (i.e. within both the methanogenic and sulfate reducing zones). 

Therefore, we attribute their degradation to both sulfate reduction and methanogenesis. 

However, the short chain alkanes (ethane, propane, isobutane, n-butane, pentane and 

hexane) were mainly degraded in the upper few centimeters of the sediment cores (i.e. only 

within the sulfate reducing zone). The short chain volatile alkanes were almost completely 

depleted until petroleum reached the sediment surface. So far, anaerobic oxidation of 

isobutane has not been shown in any pure or enrichment culture, neither as a single 

substrate nor combined with other alkanes and is generally considered to be resistant to 

biodegradation (Kniemeyer et al., 2007; Jaekel et al., 2013; Musat, 2015). To the best of our 

knowledge, the present study provides the first laboratory based evidence for potential 

anaerobic degradation of isobutane by sulfate reduction activity during petroleum seepage. 

Detection of some known short chain alkane degrading bacterial sequences in the Caspian 
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Sea sediments (next section) further confirmed their degradation by sulfate reduction 

activity. 

Based on the successive degradation of different n-alkanes over decreasing sediment 

depth, we conclude that mid- to long chain alkanes get degraded within both the 

methanogenic zone and sulfate reducing zone during the vertical ascent of petroleum. The 

short chain alkanes most likely escape the methanogenic zone undegraded until they get 

depleted within the sulfate reducing zone (Chapter 4, Fig. 7; Chapter 6, Fig. 8).  

 

4. How are different microbial communities distributed along the 

natural pathway of petroleum in marine seeps?  

 

In Chapter 5, the microbial (bacterial and archaeal) response to petroleum seepage was 

analyzed in detail in the Caspian Sea sediments to i) check if the microbial community 

composition changed after exposure to petroleum seepage, and to identify the potential 

hydrocarbon degraders, and ii) check if the microbial communities were vertically 

distributed in line with the observed zonation of redox processes and the successive 

degradation of the petroleum hydrocarbons.  

Many known groups of sulfate reducing bacteria (SRB) involved in hydrocarbon 

degradation were detected, some of whose relative sequence abundance increased in the 

final core (after petroleum seepage) compared to the initial core (befor e petroleum 

seepage). Based on the increase in their specific CARD-FISH cell numbers, clade SCA1 for 

propane and butane degradation, clade LCA2 for mid- to long-chain alkane degradation, 

clade Cyhx for cycloalkanes, pentane, and hexane degradation, Desulfobacula for toluene 

and benzene degradation were identified as some of the key SRB that are likely to be 

involved in petroleum degradation in sediments of the Caspian Sea (Chapter 5, Fig. 4). 

Detection of these hydrocarbon degrading SRB supported the observed alkane degradation 

(previous section) in the sulfate reducing zone. The archaeal community significantly 

differed in the final core compared to the initial core. Sequences related to the genus 
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Methanosarcina were nearly absent in the initial core whereas in the SOFT core they 

constituted up to almost 38% of the total archaeal sequences in the methanogenic zone 

(correspondent with the increased methane production after petroleum seepage). 

Hydrocarbon degradation by Methanosarcina spp. has not been reported yet. However, 

since there was a specific increase in their cell numbers after petroleum seepage and their 

usual syntrophic partners like Syntrophus or Desulfotomaculum were absent, we speculate 

the involvement of a yet unknown bacterial partner of Methanosarcina spp. in the 

syntrophic hydrocarbon degradation.  

Analysis of similarity in the Caspian Sea sediments revealed that the microbial 

communities (bacterial and archaeal) were significantly different from each other in 

different sediment layers supporting our hypothesis of a vertical distribution of the 

microbial communities over sediment depth during the upward migration of petroleum. 

This vertical distribution was also in line with the previously described geochemical 

zonation of different redox processes and the sequential alkane degradation in different 

sediment depths within the SOFT core. Furthermore, compared to the initial sediment core, 

the diversity of SRB decreased in the SOFT core indicating that degradation of petroleum is 

mediated by few specialized microbial communities under in situ conditions.  

Therefore, we conclude that i) during the natural migration of petroleum, different 

hydrocarbon degrading microbial communities are established along the path of the 

migration and significant differences can occur between different sediment layers in the 

path of the petroleum migration and ii) exposure to petroleum can significantly change the 

microbial community composition of the original sediment. 

 

5. How do different marine sediments respond to petroleum 

seepage?  

 

The vertical zonation of different redox processes and the pattern of successive 

degradation in petroleum towards the surface was mostly similar at all sites. However, the 
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response time for sulfate reduction activity to the onset of petroleum seepage was different 

for different sediments based on their hydrocarbon history (Chapter 6, Fig. 8). The 

response time was defined as the time required for the first steep increase in sulfide 

concentration to occur in the SOFT cores. The sulfide concentrations were integrated over 

the entire length of the core for each time point. The integrated sulfide concentrations were 

then normalized by their respective maximum values and plotted over time (Fig. 1).  

 

Figure 1. Response time of sulfate reduction in the SOFT cores after the start of petroleum seepage. 
Y-axis represents integrated sulfide concentrations (over depth) that are normalized by their 
respective maximum values (Ic). The x-axis represents the number of days since the start of the 
SOFT experiment. The appearance of first steep increase indicates the response time of the 
individual sediment core to petroleum seepage. 
 

The sediments in NAMV were collected directly from a seep. Therefore, the microbial 

community of the NAMV sediment core was considered to have been the most adapted to 

hydrocarbons. The Caspian sediments were collected from a beach without a direct active 

seepage but were considered to be hydrocarbon adapted due to the prevalent petroleum 

contamination from nearby seeps and oil extraction activities. The Santa Barbara 

sediments cores were collected from a beach without a direct seepage but were considered 

to be preadapted to hydrocarbons due to the presence of nearby seepage activity. The 
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Eckernfoerde Bay sediments were considered to be pristine without any prior adaptation 

to hydrocarbon seepage. According to the estimated response times, the NAMV responded 

the fastest to petroleum seepage (~44 days) followed by the Caspian Sea (~115 days) and 

then the Santa Barbara (~130 days) and Eckernfoerde Bay sediments (~130 days) (Fig. 1). 

Based on the faster response of pre-adapted sediments, we conclude that the microbial 

communities in naturally occurring hydrocarbon seeps or hydrocarbon contaminated 

regions respond faster to petroleum treatment compared to the microbial communities 

from non-adapted sediments. Although the Santa Barbara beach sediments were also 

considered to be pre-adapted, their relatively long response time (similar to Eckernfoerde 

Bay) suggests that the anaerobic microbial community might not have been well 

established in the initial sediments due to constant exposure to oxygen and tidal actions.  

Outlook 

Quantification of in situ rates: 

The SOFT system provided evidence for degradation of petroleum under sulfate reducing 

and methanogenic conditions in an almost natural setting. However, since the 

hydrocarbons were sampled only twice, once during the initial sampling and once during 

the final sampling, the turnover rates of different alkanes could not be calculated. The 

system and the sampling techniques could be modified to provide a time series of 

hydrocarbon analyses, so that turnover rates of individual alkanes, as well as the rate of 

methanogenesis could be estimated for close in situ conditions of petroleum seepage.  

Anaerobic oxidation of methane (AOM) in the presence of petroleum 

The SOFT system could be modified to simulate a methane seep in the presence of 

petroleum to predict the extent of AOM in seeps that feature both methane and higher 

hydrocarbons. In the modified SOFT system, both methane and petroleum could be 

supplied from the bottom of the core, and sub samples could be used to measure both the 

AOM and sulfate reduction rates to see how they are coupled in a methane rich petroleum 

seep. The results obtained could then be used to study global methane emissions from 

seeps that feature both methane and petroleum.    
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